Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A Breakthrough

The prize in this hunt is an invisibly small translucent dot found on the inside of an early stage of the human embryo, known as the blastocyst. Several days following fertilization, the blastocyst, a hollow ball of about 140 cells, rolls out of the fallopian tube and into the uterus, to be implanted there. Clinging to the inside of this rolling sphere are a group of identical cells-the ES cells-which are the starting point of the fetus. Soon they will divide rapidly and their descendants will take on increasingly specialized roles, emerging as heart, muscle, blood, bone, hair, nerves and all the rest of the human apparatus. For now, though, they are pure potential: holding the capacity to become any part of the body. And therein lies their mystery and their biomedical significance.

Biologists, understandably, are fascinated. But before they can study this primordial cell, they need to capture it-and control its growth-in the laboratory, something that hasn’t proved easy to do. Like physicists studying particles present at the birth of the universe by recreating its initial conditions in high-energy colliders, biologists are attempting to isolate the ES cell with a concoction of powerful biological substances that mimic those present in the first days of life.

The science behind ES cells began in earnest in 1981, when researchers in Great Britain and California independently succeeded in isolating a curious kind of cell from the interior of the mouse blastocyst. These embryonic cells were identical but each had the potential to give rise to an enormous range of different cell types-a defining mark of a stem cell.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me