Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

It took 20 years, but in April a treaty finally went into effect banning chemical weapons. While the Chemical Weapons Convention is an important step toward a safer world, it may have the undesired effect of encouraging some countries to redouble their efforts to acquire biological weapons-disease-causing microbes and natural poisons such as anthrax, pneumonic plague, and botulinum toxin. Biological weapons are not only more potent than chemical weapons but they are easier to produce in small, clandestine facilities.

A biological attack could create an almost unimaginable catastrophe. According to an estimate by the U.S. Congress’s former Office of Technology Assessment, 100 kilograms of anthrax, released from a low-flying aircraft over a large city on a clear, calm night, could kill 1-3 million people. This figure is comparable to the casualties from a one-megaton hydrogen bomb. When disseminated as an aerosol, anthrax spores (analogous to microscopic seeds) are inhaled deep into the victim’s lungs and travel to the lymph nodes, where they germinate and multiply. The bacteria then secrete potent toxins, giving rise in about three days to a devastating illness. For the victims to have any chance at all of surviving, antibiotics must be administered intravenously before the onset of acute symptoms.

Because biological weapons are so potent yet much cheaper and easier to produce than nuclear weapons, they have been called “the poor man’s atomic bomb.” In addition to their potential use as strategic weapons of mass destruction, biological agents are well-suited for covert operations such as sabotage, terrorism, counter-insurgency warfare, and assassinations.

The threat of biological warfare is not just an academic concern. In October, the United Nations Special Commission (UNSCOM) monitoring the elimination of Iraq’s weapons of mass destruction concluded that Iraq was still trying to conceal the full scale and scope of its biological weapons program. Iraq acknowledged in 1995 that prior to the Gulf War, it had produced large quantities of anthrax spores, botulinum toxin, and a fungal poison called aflatoxin, filled them into at least 166 aerial bombs and Scud missile warheads, and stockpiled them ready for use. Although Iraq claimed to have destroyed its biological arsenal after the war, U.N. inspectors suspect that Iraq may still be hiding a cache of anthrax spores and germ filled warheads.
In November, Iraq barred U.S. experts from participating in UNSCOM weapons inspection teams, apparently because the Americans were hot on the trail of banned weapons activities. While the on-site inspections were on hold, the Iraqis moved equipment and tampered with surveillance cameras at ostensibly civilian facilities, such as vaccine plants, that could potentially be used for producing biological warfare agents as well. In a letter to the U.N. Security Council, UNSCOM Executive Chairman Richard Butler warned that without effective monitoring, the Iraqis could easily adapt laboratory or industrial equipment in “a matter of hours” to produce stocks of biological warfare agents.

Iraq is only the best-known example of several countries-among them China, Egypt, Iran, Iraq, Libya, North Korea, Sudan, Syria, and Taiwan-known or suspected to be pursuing a biological warfare capability. The U.S. government also believes that rogue elements within the Russian military may be continuing Soviet programs to develop biological weapons, despite President Boris Yeltsin’s 1992 order that such activities cease.

Particularly alarming is the possibility that domestic or international terrorist groups could acquire biological weapons and use them against civilian targets. The Japanese cult Aum Shinrikyo, which in 1995 carried out a deadly attack with a chemical nerve agent on the Tokyo subway, was found to have an advanced microbiological facility to produce anthrax and botulinum toxin. In 1994, cult members repeatedly released anthrax spores from the roof of a high-rise building in Tokyo in an attempt to inflict mass casualties. Fortunately, technical problems with the delivery system rendered these attacks ineffective.

In principle, production of biological weapons is already banned by the Biological Weapons Convention (BWC), a treaty that has been in force since 1975. But the BWC was born with a crippling defect: it lacks a formal mechanism for investigating alleged violations, and thus has come to be regarded as little more than a gentleman’s agreement. At the time the treaty was negotiated in the early 1970s, verification procedures were considered unnecessary because biological weapons were believed to have little military value. Shortly after the BWC took effect, however, the advent of recombinant-DNA technology raised the specter of engineering new pathogens that might be more controllable, lethal, or persistent, leading some defense analysts to reassess their utility as warfare agents.

The coming year will provide an opportunity for progress toward crafting an inspection regime to strengthen the BWC. A group of member-countries, known as the Ad Hoc Group, will meet in Geneva for a few weeks in January and then for three more negotiating sessions later in the year. Their goal: to develop monitoring mechanisms to check that member-countries are obeying the treaty’s prohibitions. This legally binding “compliance protocol” will specify how international inspectors from a future BWC monitoring organization will be allowed to enter and examine facilities suspected-or merely capable-of producing biological warfare agents.

Possible elements of a compliance protocol include:

requiring countries to declare the existence of all relevant biological facilities.
n routine on-site visits to check the accuracy of such declarations.occasional “challenge” inspections to pursue suspected treaty violations at declared or undeclared facilities.field investigations to pursue allegations of biological-weapons use and suspicious outbreaks of disease.

Whatever monitoring measures are agreed to will be equally binding in all participating states. Operating under a kind of “golden rule” for treaty negotiations, members of the Ad Hoc Group must be prepared to accept the same types of intrusive monitoring they wish to apply to others. Each nation must therefore find the right balance between a regime that is intrusive enough to ensure that other countries are following the rules and one that allows them to safeguard sensitive industrial and national-security information. U.S. pharmaceutical and biotechnology companies, for instance, have expressed concern that intrusive inspections could open the door to industrial espionage. Companies routinely invest millions of dollars to develop and test new medications, production microorganisms, and manufacturing processes. Any negotiated protocol must therefore specify compliance measures that safeguard proprietary information.

While most of the countries in the Ad Hoc Group agree that the compliance protocol should provide for short-notice inspections of suspect facilities, they have been unable to reach consensus on a mechanism for triggering them. Last summer, however, the group took an important step forward by deciding to prepare a draft treaty-a “rolling text,” in diplomatic parlance-in which non-agreed language is set off in brackets. Right now, the draft is still full of brackets.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me