Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A Particular Passion

THE Superconducting Supercollider was to be the most powerful particle accelerator in the world. The 53-mile underground tunnel, lined with 11,000 superconducting magnets, would accelerate two beams of protons in opposite directions around a gigantic ring, slamming the beams together to create a spectacular fireworks display of subatomic particles. Physicists expected that by mimicking the conditions thought to exist in the primordial plasma of the early universe, the supercollider would reveal new and exotic species of particles, thereby providing significant insight into the fundamental structure of matter.

During this exciting period, I began studying introductory physics in high school. Caught up in the enthusiasm of the time, I became enraptured with the field. I was first exposed to modern physics through Stephen Hawking’s remarkable bestseller A Brief History of Time. Hawking’s straightforward description of the frontiers of particle physics left an indelible impression. In stark contrast to the familiar realm of classical mechanics, the world of subatomic phenomena seemed counterintuitive and of course wholly unfamiliar. I vowed then to understand properly this domain of physical phenomena.

You can imagine my excitement upon entering MIT as a freshman in September 1993, enchanted by the prospect of performing future research in that field. You might also imagine my profound disappointment one month later when, Congress unceremoniously scrapped the supercollider project. Construction of the 16,000-acre facility was halted, machinery was salvaged at auction, and the half-completed underground tunnel was refilled with dirt. The extraordinary machine, once heralded as the flagship for the world’s highenergy physics program, was reduced to a barren plot of broken earth in Waxahachie, Texas.

Although the project’s termination was not in itself a devastating blow, many highenergy physicists perceived it as a symptom of diminishing U.S. support for the entire field of research. On the brink of new achievement, the particle-physics community had choked on the end of its leash, held back by a Congress that held little esteem for basic research.

Some time after the supercollider’s demise, I visited a particle physicist at MIT and noticed on his office wall a poster that vividly demonstrated the response of the physics community to the recent news. The poster featured a large graph on which time was labeled on the horizontal axis from 2000 BC to the present, with a thick red line representing the “accumulated knowledge” of physics. After the Renaissance, the red line’s slope increased exponentially, leaping incredibly in the twentieth century and seeming to approach infinity in the 1990s-before abruptly breaking. A prominent jagged edge was labeled “The Death of the Superconducting Supercollider.”

Students and faculty alike became exceedingly grim about the prospects for new research and new careers in particle physics. Professors suggested that I concentrate on solid-state, condensed matter, or atomic and molecular physics, so that I might find a job in industry or defense. Many recent graduates resorted to semipermanent postdoctoral fellowships, previously considered only stepping-stones to tenuretrack positions. Some graduates even left the field, applying their analytical skills to areas such as finance theory on Wall Street or cost-benefit analysis for consulting firms. Suitably disturbed by such stories, I decided to pursue a second degree along with my physics work, in the more financially lucrative field of computer engineering. For a time I relegated my interest in particle physics to a “hobby.”

But I soon found that my “hobby” consistently challenged and interested me more than my principal field of study. Although I was competent, I lacked the spirit or enthusiasm to pursue computer engineering as a lifelong occupation. Engineering emphasizes the practical aspects of constructing complex systems-work I considered banal compared with the task of a particle physicist. The grand challenge of that field is to reduce the entire structure of the universe to a simple set of absolute physical laws describing the fundamental nature of matter.

Many have criticized particle physics for that exact goal, in fact, claiming it has no relevance to everyday phenomena. Such observers fail to realize that by neglecting pure or abstract research, we imperil long-term technological development. When Michael Faraday presented his experiments in electricity and magnetism to Queen Victoria, she reportedly asked him, “What good is electricity?,” to which he replied, “Madam, what good is a baby?” A presumption that pure research will never yield practical results is naive and shortsighted.

Yet for the sake of argument, even if particle physics never proves “useful,” the pursuit of knowledge itself makes the task worthy. The ancient Greek philosophers understood this to the extent that they were almost contemptuous of practical knowledge, favoring the abstract over the concrete. During the Age of Reason in the 1600-1700s, scientists continued to study physics primarily for its own sake; this pursuit of knowledge was ennobled by a perception that the laws of physics were a manifestation of God’s order. Not until after the advent of the industrial age did the study of physics become a more practical occupation, a means for developing new technology. The world wars of the twentieth century firmly established that physics could have practical applications, most conspicuously in the development of the atomic bomb.

Almost four years after the supercollider was canceled, and despite a persistent climate of pessimism about the field, I have decided to pursue a career in particle physics. Egotism or naive idealism might be blamed, but I prefer to ascribe my decision to stubborn optimism. For the same reason a poet writes poems, I will continue to study this field: not because it is practical but because it is important. Making a living may not be easy, but doing something I dislike will mean, for all intents and purposes, not living at all. The death of the superconducting supercollider, though unfortunate, will not end future research in particle physics, and I intend to contribute to that work.-Jeff Bowers

0 comments about this story. Start the discussion »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me