Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

PhDs Aren’t Everything

The Mathematics Table Project and other WPA research efforts remind us that although science needs people with doctorates, it also needs those trained less intensively. If we make earning a doctorate the only worthy goal of scientific education, we may not best serve the long-term interests of science and those who are drawn to it. The issue is relevant now because we may be producing too many PhDs in the sciences. In physics, for instance, we annually turn out 1,400 new doctorates for 700 positions. The WPA focus on support staff for scientists suggests a way out of this bind. People with good technical, bachelor’s, and master’s degrees-not just those with doctoral degrees-also play important roles in launching a Hubble Space Telescope or turning an idea into a product.

We should avoid making hasty decisions about the numbers of PhDs needed, since employment prospects can change over the years necessary to produce a scientist with a doctorate. But the more choices we can give students during this uncertain funding period, the more they-and science-can succeed. One way to achieve such flexibility is to offer a variety of degrees.

The Physics Department at Emory University, where I teach, offers both a traditional BS degree and a BA-the latter requires fewer physics courses and is intended for those who want to pursue directions other than a graduate physics program. We also offer a BS in applied physics, representing a move away from the idea that every student must study advanced quantum mechanics. This curriculum trades some standard courses in theory for others in optics, computing, and electronics, preparing students for either immediate employment or graduate work in those fields. The applied track has become our department’s most popular undergraduate program.

Graduate education can also be made more flexible by offering highly specialized master’s degrees that are not just traditional low-value whistle-stops along the track to a doctorate but provide substantial training in, say, growing semiconductor materials. And if graduate education were to include more practice in writing, speaking, teaching, and managing research, it would give students additional abilities to help them keep up with a changing job market.

Another lesson from the WPA era is that, although science needs proper facilities, a healthy scientific enterprise can continue even in the face of government cutbacks in funding for equipment. The WPA paid for people instead. Scientists such as Lawrence, Alvarez, and Seaborg made do with existing facilities or exercised their ingenuity to find other sources of support, such as the nonprofit Research Corporation. (Since
1912, this nonprofit foundation has applied the proceeds from an invention that reduced industrial air pollution for the “advancement of technical and scientific investigation”-varied research that has, in fact, included some of my work.) Lawrence also raised about $2 million from the Rockefeller Foundation and other nongovernment donors to begin building, in 1940, the world’s biggest cyclotron, then the pinnacle of elementary particle research.

Today private funding still has its impact. For instance, the W. M. Keck Foundation has given $140 million to build an observatory housing an immense telescope on the extinct Mauna Kea volcano in Hawaii. But the costs of many kinds of equipment have outstripped the reserves of private support-and sometimes even government aid. In 1993, the Superconducting Supercollider, descended from the cyclotron, had already cost $2 billion when the federal government abandoned preliminary construction in the Texas desert rather than spend another $9 billion.

While scientists should continue seeking and receiving federal money to support needed equipment or upgrades of valuable but aging facilities, they can also try to replace dollars with ingenuity, as NASA scientists and engineers have already done. For example, they have simplified the large Cassini spacecraft expected to be launched this October to examine Saturn and its environs. One change eliminated a rotating platform that was to hold astronomical instruments. Without the platform the space vehicle must alternate between gathering data and turning its body so its antenna faces the earth, which enables the craft to send home the information. Still, the device can harvest a broad range of information. Such modifications have reduced costs of the Cassini mission by one-fifth.

And in elementary particle physics, costs will be shaved from the next huge accelerator, the Large Hadron Collider, because it will be built within an existing tunnel some 17 miles around. And because that tunnel is located at the European Laboratory for Particle Physics (known as CERN), the international agency for particle research that straddles the Swiss-French border, support should be readily available from several nations. Researchers are also beginning to examine novel and potentially much cheaper table-top-size, laser-based techniques that may someday serve to raise elementary particles to high energies.

As scientists face funding realities, they also need to confront an inevitable corollary: if science needs public dollars, it must win public acceptance. That means showing that the work is important to society. The WPA offers a lesson here as well, but through its artistic rather than scientific activities. Poring over WPA reports, I found no efforts to present science to the public, although scientific breakthroughs did attract popular attention. But the WPA made a point of bringing its artistic activities to people. The Music Project invited Aaron Copland and Virgil Thomson to conduct public concerts; the Art Project attempted to beautify the civic world. These efforts were not meant to turn most citizens into painters and composers but to show that culture is, or should be, part of our lives.

In 1997, science too is part of our lives. It has become an economic engine. Yet its practitioners often fail to impart to the public a sense of how science works and what it has accomplished; they fail to awaken the sense of wonder that occurs when we gain insights into the human mind or find planets beyond our solar system.

Even in the college classroom, where we are supposed to be reaching people, we often do a poor job. Few science courses and textbooks aim at non-majors. I teach astronomy to nonscientists and find that most available texts cannot bear to omit any facts whatsoever. The poor students, who have no plans to become professional astronomers, lose sight of beautiful ideas in thickets of detail. If science were more accessible, helping students to understand the natural world and their own civilization, it would yield better-informed citizens who might listen carefully when scientists ask for funding.

In the 1930s and ’40s the massive WPA effort, including its science program, created jobs and thus helped hold together an unraveling social fabric and give people hope. Only if scientists understand the realities of the 1990s-only if they appreciate that science is deeply rooted in a society and an economy in good times and bad-and they respond appropriately, will society support them with a similar powerful conviction.

0 comments about this story. Start the discussion »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me