Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Building an “Invention Factory”

Some 40 minutes from Manhattan along Interstate 280, the middle-class community of West Orange, N.J., looks much the same as it did in Edison’s day. Tired brick storefronts line a depressed but still viable downtown. A few blocks away, nestled unobtrusively in a drab, semi-industrial neighborhood, Edison’s West Orange facility, built in 1887, fills two fenced-off blocks with a cluster of vaguely fortresslike brick buildings. The very creation of an independent laboratory here in a prosaic New Jersey suburb is nearly as noteworthy as the work conducted inside. Bearing no visible connection to a university or corporate headquarters, the laboratory stands alone both visually and figuratively. Rutgers historian Paul Israel, one of the editors working on the Thomas Edison Papers Project and the author of a forthcoming biography of Edison-the first based on extensive access to the archives-explains some of the vision behind the freestanding laboratory. “Edison was one of the first,” he says, “to understand that the invention process could be organized.”

In a posthumous work on invention published in 1993, the eminent computer scientist Norbert Wiener attests that Edison’s most lasting innovation “was the invention of the industrial scientific laboratory in which a moderately large trained crew of technicians was directed by a central mind towards the making of inventions as an everyday business.”

Many of the techniques Edison would use to run his R&D operation were honed in nearby Menlo Park, where he initially built a laboratory and adjacent boarding house for his workers. There Edison and a dozen colleagues worked in teams to tackle as many as 40 separate projects at a time, including the lightbulb. In 1876, with typical bravado, Edison promised that the enterprise would yield a “minor invention every ten days and a big thing every six months or so.” Remarkably, Edison averaged close to this success rate throughout most of the ensuing four decades.

Cashing in on the initial fame and financial success afforded by his invention of the lightbulb, Edison seized the opportunity in his West Orange laboratory to more completely realize his vision of what he called his “invention factory.” He chose the rural site near his newly purchased estate because it offered lots of space upon which to build yet proximity to Manhattan’s supply of materials, workers, and capital. Here, conscious that he was forging a new path for commercially oriented technological research, Edison built one of the world’s first full-scale R&D complexes.

The breadth of the West Orange facility’s mandate is one of the first things to strike a visitor. Introducing her sweeping tour, Maryanne Gerbauckas, superintendent of the Edison National Historic Site, explains that it includes a metal foundry, two large machine shops, a fully stocked chemistry lab, a woodworking shop, glassblowing facilities, a darkroom, and sound-recording and film studios, not to mention a lavish, wood-paneled 40,000-volume library. “Edison didn’t leave much out in his conception of this place,” she says.

To build what he immodestly referred to as the “best equipped and largest Laboratory extant,” Edison realized he needed “facilities incomparably superior to any other for rapid and cheap development of an invention … into commercial shape.” The effort, he noted, would require the facility to carry “a stock of almost every conceivable material,” so that he would be able to “build anything from a lady’s watch to a locomotive.” Israel says the lab reveals that “Edison understood quite early on that naturally occurring materials held open vast possibilities for exploration, exploitation, and development.”

Nowhere is Edison’s passion for diverse resources as clearly evident as in the storeroom, one of the first stops on Gerbauckas’s tour. Standing before banks of small wooden drawers that line several walls, Gerbauckas explains that each holds different samples; to her side larger stocks of metal sheets, rods, and pipes are neatly arranged. She recounts the inventor’s famous quip that the storehouse contained “everything from an elephant’s hide to the eyeballs of a United States Senator.”

An 1887 newspaper report confirms that the West Orange stock room contained “eight thousand kinds of chemicals, every kind of screw made, every size of needle, every kind of cord or wire, hair of humans, horses, hogs, cows, rabbits, goats, minx, camels, … silk in every texture, cocoons, various kinds of hoofs, sharks’ teeth, deer horns, tortoise shell, … cork, resin, varnish and oil, ostrich feathers, a peacock’s tail, jet, amber, rubber, all ores, [and] metals.”

Edison put such exotic substances to use with surprising regularity. His notebooks, for instance, show that in their quest to discover an effective lightbulb filament, he and his assistants experimented with no fewer than 3,000 separate materials, including platinum and Japanese bamboo, before finally settling on carbonized cotton thread. After much similar trial and error, Edison employed compressed rainforest nuts to make the needle used in some of his earliest phonograph models before ultimately choosing tungsten as the best material for the job.

As W. Bernard Carlson, a historian of technology at the University of Virginia, explains it, Edison approached the process of invention more like a craft worker than a theoretical scientist. “For Edison the craftsman, invention was a tactile and visual activity,” he says, and “scientific instruments were extensions of his senses.” He contrasts the “collection of craft shops” at the West Orange facility, which employed glassblowers and machinists, with the more theoretical approach to conceiving new products that became common during ensuing decades. Of course, Edison also hired mathematicians and scientists throughout his career. But he relentlessly chided his college-educated colleagues that their university experience had corrupted them by teaching them to see only “that which they were taught to look for,” thus prompting them to overlook many of nature’s great secrets.

Tying “R” to “D”

Gregory Field, a historian at the University of Michigan at Dearborn who spent five years scrutinizing the early notebooks as part of the Edison Papers Project, says Edison’s key contribution to modern research efforts is his maverick insistence on “always tying the R’ to the D’.” Edison persistently held that “invention involves not just research but research, development, and marketing,” Field maintains-a view that would ultimately help usher in a new relationship between scientists and the entrepreneurial use of their work. According to Edison, in fact, “Dollars and science were so much mixed up” in his career that it was sometimes hard to separate his inventive activities from the continual stream of commercial ventures in which he involved himself.

To be sure, entrepreneurs of all stripes flourished during Edison’s day, and Edison counted some, like Henry Ford and Harvey Firestone, among his close acquaintances. But Edison’s approach contrasts with that of many other scientists of his time, including Louis Pasteur of France. Pasteur was well known for his widely accepted view that “a man of science [sic] would complicate his life and risk paralyzing his inventive faculties” if he deigned to involve himself in using his discoveries as a source of commercial profit.

Edison almost defiantly emphasized his role as an “industrial scientist” to contrast himself with academic scientists such as Pasteur. Not surprisingly given his success, he inspired others to pursue a similar approach. For instance, historians have traced Alexander Graham Bell’s establishment of a small general research laboratory-the precursor of what would ultimately grow into the enormous Bell Laboratory complex (now Lucent Technologies)-to Edison’s example.

Yet unlike many of the R&D efforts he spawned, Edison repeatedly refused to be closely linked to any particular corporate mission. For example, although Edison relied on sponsors such as Western Union, one of the largest companies of the day, he avoided direct oversight of his work in order to pursue the widest possible R&D agenda.

Edison’s independence would prove to be a short-lived “golden moment” in modern research. As early as 1896, Carlson notes, emerging giant General Electric chose to contract with Edison’s more systematically oriented competitor Elihu Thompson to attempt to manufacture x-ray tubes. Given that he had worked on such tubes and helped found General Electric, Carlson says, Edison would have been a more obvious choice. “But by then he was already viewed by corporate managers as an unreliable and unpredictable source of innovation,” Carlson maintains, because of his insistence on following where his own intuition led.

0 comments about this story. Start the discussion »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me