Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Losing Sleep

Although the malaria parasite, which attacks red blood cells, is one of the deadliest killers on the planet, there is a great deal scientists don’t know about how it works. Scientists do know that malaria makes red blood cells stiffer, which impedes their ability to move through the bloodstream, and it makes them stickier, which causes them to clump together and stick to blood vessel walls. But Suresh’s work has yielded far more precise knowledge of just how stiff red blood cells get. Researchers had believed infected cells to be about three times as stiff as healthy cells, but Suresh showed that they are in fact up to 10 times as stiff.

Malaria parasites grow to maturity within 48 hours. Suresh wants to know how the stiffness of affected red blood cells changes as the parasite matures.Experiments on such a time scale would have been almost impossible in the past: Suresh and his colleagues previously used optical tweezers that might need an hour to catch a single blood cell, and it took hours more to process the data they collected. With the new tweezers, Mills can grab a cell in seconds, and improved modeling software lets the team analyze the data in real time. The improvements in the technique make practical a series of experiments designed to study the action of specific proteins responsible for altering cells infected with malaria.

The first protein the Suresh group is studying is the RESA protein, which a malaria parasite introduces into an infected cell. The protein affects the cell membrane, and Suresh and his collaborators at the Institut Pasteur and the National University of Singapore want to see how the cell’s elasticity varies at different stages of the parasite’s development. The researchers hope to learn whether the protein is an attractive target for treating or preventing malaria.

In an effort to determine what role the RESA protein plays in malaria, Mills uses infected cells in which the protein is deactivated and then measures the stiffness of the cells at various points in the parasite’s 48-hour growth cycle. As a control, he also measures cells in which the protein is active; the comparison should show whether the protein’s inactivity at different stages of the parasite’s growth has any effect on cell structure.

The 30-minute setup of the tweezers includes a series of calibrations to make sure that the force exerted by the laser is small and precise enough for experiments on the nanoscale. “My biggest complaint is that parasites don’t sleep,” says Mills, who has to get up at all hours to test the stiffness of cells in different stages of infection. That test involves turning on his 10-watt laser, focusing the laser on the beads, and capturing a red blood cell. He then spends about half an hour applying various degrees of force to the cell, with the data and video being fed into his computer.

Sticky Problems

Suresh points back to the computer screen, where Mills has captured another cell. But red blood cells are not solitary things. The parasite creates “knobs” on the surface of a red blood cell that make it stick to healthy cells, sometimes causing clumping in the bloodstream. Such clumping can cause tremendous internal damage and even death.

“We think we can measure the force of adhesion between two cells – a measure of the stickiness, which also plays a huge role in the development of the disease,” Suresh says. “As far as we know, nobody has quantified that stickiness.” Suresh hopes that determining the force of adhesion will help lead to a malaria treatment that improves blood flow.

Although Suresh is excited about the biological work he’s doing, he’s also circumspect. Nanoscale measurement of the physical properties of biological cells is really still in its early phases, he says. “We’re just starting to put this together. It’ll be five years before we start to see where we can go. We still have to understand the science. Then we can figure out the potential for treatments.”

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »