Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A Liquid Asset

The ease of integrating the silicon detector with other components should make it useful in microfluidics, a hot area of biomedical research. In microfluidics, the various steps involved in preparing and testing a sample are executed on a microchip. The liquid in, say, a blood sample moves through microscopic channels, where procedures such as bursting open cells, separating their component molecules, and running tests on those molecules all happen in tiny channels.

Manalis says the silicon microchannels built by his lab can be easily incorporated into such a microfluidic scheme. His detectors, he points out, determine the contents of an extremely small volume of liquid, about 10 picoliters – roughly the volume of a single cell.

Other physicists have shown that microscopic vibrating cantilevers could be an extremely sensitive method for detecting mass, explains Manalis. “If you talk to physicists, their favorite quantity to measure is vibrational frequency because it is very easy to measure. It’s very robust, and it is very hard to interfere with.”

But previous work had encountered a seemingly insurmountable practical problem when it came to detecting biomolecules: the cantilevers had to operate in a dry environment, preferably in a vacuum. In water or any other liquid, the delicate vibrations would be instantly damped. That’s a problem, says Manalis, because the biomolecules that scientists want to detect – viruses, for example – are found in aqueous environments, such as a blood sample. In biology, he points out, “everything happens wet.”

It is here that Manalis came up with an ingenious solution. He and his colleagues hollowed out a tiny channel inside the cantilever so that small volumes of the sample would flow into it; the targeted biomolecules bind to the inner walls. The vibrations of the suspended resonator are still affected by the mass of the binding molecules, but there is no longer any surrounding fluid to damp them.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me