Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Cochlear implants that electrically stimulate the auditory nerve have granted at least limited hearing to hundreds of thousands of people worldwide who otherwise would be totally deaf. Current devices, however, require that a transmitter about an inch in diameter be affixed to the skull, with a wire snaking down to a combined microphone and power source that looks like an oversized hearing aid.

Researchers at MIT’s Microsystems Technology Laboratories collaborated with physicians from Harvard Medical School and the Massachusetts Eye and Ear Infirmary to develop a new low-power signal-processing chip that could lead to a cochlear implant with no external hardware. It would be wirelessly recharged and would run for about eight hours per charge.

They also developed a prototype charger that plugs into an ordinary cell phone and can recharge the signal-processing chip in roughly two minutes.

“The idea with this design is that you could use a phone, with an adapter, to charge the cochlear implant, so you don’t have to be plugged in,” says Anantha Chandrakasan, a professor of electrical engineering and corresponding author on a paper by Marcus Yip, PhD ’13, presented at the International Solid-State Circuits Conference. “Or you could imagine a smart pillow, so you charge overnight, and the next day, it just functions.”

Existing cochlear implants use an external microphone to gather sound, but the new implant would use the natural microphone of the middle ear, which is almost always intact in cochlear-implant patients. Normally, delicate bones in the middle ear, known as ossicles, convey the vibrations of the eardrum to the cochlea, the small spiral chamber in the inner ear that converts acoustic signals to electrical ones. The new device would employ a tiny sensor that detects the ossicles’ vibrations, relaying their signal to a microchip implanted in the ear. That microchip would convert it to an electrical signal and pass it on to an electrode in the cochlea.

Lowering the power requirements of the converter chip was the key to dispensing with the skull-mounted hardware. Among other innovations, Chandrakasan’s lab developed a new signal-generating circuit whose waveform—the basic electrical signal it emits—requires 20 to 30 percent less power to produce than those used in existing cochlear implants.

The researchers showed that the chip and sensor can pick up and process speech played into the middle ear of a human cadaver. They also tested the new waveform on four patients with cochlear implants and found that it did not compromise their ability to hear.

2 comments. Share your thoughts »

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »