Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

x-ray of a human wrist

A sample x-ray of a human wrist demonstrates a new system’s ability to reveal very fine details.

X-rays are a crucial tool of medicine, but to image the body’s soft tissues they generally require contrast-enhancing agents that must be swallowed or injected, and their resolution is limited. But researchers at MIT and Massachusetts General Hospital have come up with a new approach that could dramatically change that, providing the most detailed images ever—including clear views of soft tissue without contrast agents.

The new technology could be smaller and cheaper than conventional systems, says Luis Velásquez-García, a principal research scientist at MIT’s Microsystems Technology Laboratories. It could also deliver higher resolution and reduce patients’ radiation exposure. The key is to produce coherent beams of x-rays from an array of micrometer-size point sources instead of a spread of beams from a single large point, as in conventional systems.

Velásquez-García says the technology would provide a unique view of the body’s organ systems. A simulation of the new system that the team performed with an eye from a cadaver clearly showed “all the structures, the lens, and the cornea,” he says.

Adapting hardware developed for microchip manufacturing, the researchers produced a nanostructured surface with an array of tiny tips, each of which can emit a beam of electrons. These, in turn, pass through a microstructured plate that emits a beam of x-rays. The resulting coherent beam is equivalent to something that can now be produced only by “incredibly expensive” systems at linear particle accelerators, Velásquez-García says. Those facilities were the first to demonstrate the diagnostic power of coherent beams—for example, revealing a cancerous tumor by showing the blood vessels supplying it.

“You can’t have a linear accelerator in every hospital,” he says. But the new system could potentially improve the resolution of conventional x-ray imagery by a factor of 100 with hardware that costs orders of magnitude less, he says.

The technology could also be applied beyond medicine. For example, it could be useful in airport baggage screening, differentiating a bottle of shampoo from a container of explosives.

0 comments about this story. Start the discussion »

Credit: Photo courtesy of Shuo Cheng

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »