Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

MIT engineers have developed a nanoscale biological coating that can halt bleeding almost instantaneously, an advance that could dramatically improve injured soldiers’ survival rates.

The researchers, led by chemical-­engineering professor Paula Hammond ‘84, PhD ‘93, coated sponges with a spray that includes thrombin, a clotting protein found in blood. The sponges can be stored stably and carried by soldiers or medics, and they could also prove valuable in civilian hospitals.

“The ability to easily package the blood-clotting agent in this sponge system is very appealing because you can pack them, store them, and then pull them out rapidly,” ­Hammond says. The sponges can also be molded to fit the shape of any wound.

Uncontrolled bleeding is the leading cause of preventable trauma death on the battlefield. Traditional methods to halt bleeding, such as tourniquets, are not suitable for the neck and many other parts of the body. More recent inventions such as fibrin dressings and glues have a short shelf life and can cause an adverse immune response, and zeolite powders made of very absorbent minerals are difficult to apply under windy conditions and can cause severe burns. Bandages made of chitosan, a derivative of the primary structural material of shellfish exoskeletons, have had some success but can be difficult to mold to complex wounds.

Hammond’s team came up with the idea of coating existing, highly absorbent gelatin sponges with alternating nanoscale layers of thrombin and tannic acid, a small molecule found naturally in tea. This approach allowed a large amount of thrombin to be packed into the sponges, coating even the interior pores, and helped protect the thrombin in a stable form. Once sprayed, some sponges were stored for more than a month before use.

“Now we have an alternative that could be used without applying a large amount of pressure and can conform to a variety of wounds, because the sponges are so malleable,” says Anita Shukla, PhD ‘11, lead author of an Advanced Materials paper describing the research.

The researchers, whose work is supported by MIT’s Institute for Soldier Nanotechnologies, have filed a patent application on this technology and on similar sponges coated with the antibiotic vancomycin. Hammond’s lab is now working on combining the blood-clotting and antibiotic properties in a single sponge.

0 comments about this story. Start the discussion »

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me