Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Across the Atlantic, a team that formerly worked for the Renault Formula 1 team has adapted its motorsport-developed flywheel system for use with conventional vehicles. The team has formed a company, Flybrid Systems, to commercialize the technology, and has teamed up with Jaguar Land Rover to trial the Flybrid technology that was originally developed as the kinetic energy recovery system (KERS) used in Formula 1 racing to provide a boost during racing. But while most KERS systems work by using a flywheel to charge an onboard battery or supercapacitor, Flybrid uses a gearbox system to transfer kinetic energy directly to and from the wheels.

Flybrid cars transfer energy via either a continuously variable transmission or a less complex three-gear system, which allows 15 different gear ratios on a standard five-gear model. “There are always efficiency losses when you convert energy,” explains Flybrid’s technical director, Doug Cross. “This system eliminates those losses, making it far more efficient.”

The flywheel weighs five kilograms and is made from carbon fiber wrapped around a steel core. Because it is so light, it has to spin fast—at 60,000 rpm—which means that its rim is traveling at supersonic speeds. As a result, it has to operate in a vacuum, and Flybrid has developed special seals so that the wheel can be fully enclosed inside a safety container in case of a crash. At top speed, the flywheel can store 540 kilojoules of energy, which is sufficient to accelerate an average-sized automobile from a standing start to 48 kilometers per hour.

“One way you can use this technology is to boost the car during a cruise,” Cross said. “We have a system installed on a Jaguar saloon, and that has shown that during a cruise, you can actually switch the engine off for 65 percent of the journey. With a V6 diesel engine, it cuts fuel use by 26 percent, but gives you the power of a V8 petrol engine.”

9 comments. Share your thoughts »

Credit: Bloomberg via Getty Images

Tagged: Energy, energy, automobiles, hybrid, cars, transportation

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me