Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The impact of Woodall’s heterojunction research would be staggering. By 2001, when President George W. Bush awarded him the National Medal of Technology, it was estimated that about half the annual $5 billion in sales of gallium arsenide-based semiconductor devices could be traced to his seminal publications and patents. For that work, Woodall has earned numerous awards besides the presidential medal, including the 2005 IEEE Jun-ichi Nishizawa Medal, the 2000 IEEE Third Millennium Award, and the 1997-1998 Eta Kappa Nu Vladimir Karapetoff Eminent Member’s Award. In 1989 he was elected to the National Academy of Engineering.

Now a professor of electrical and computer engineering at Purdue University, Woodall is working on developing a novel way of generating hydrogen in hopes of making it a more practical fuel. His current research focuses on an aluminum-rich alloy containing gallium, indium, and tin that can react with water to produce hydrogen and aluminum hydroxide. The aluminum hydroxide resulting from this reaction can be recycled back into aluminum through commercial electrolysis.

Woodall is focusing on two practical applications for this process. First, he hopes to add hydrogen to diesel engines to increase their combustion efficiency. He also thinks that ships could generate their own fuel by splitting seawater to release hydrogen.

Harnessing the planet’s abundant supply of hydrogen requires overcoming several challenges. For instance, the process of recycling aluminum hydroxide back into aluminum emits carbon, because it relies on carbon electrodes. But Woodall points out that a greener type of electrode is being developed, and he remains convinced that hydrogen power has a bright future. For Mr. Fix-It, daunting challenges are part of the fun.

0 comments about this story. Start the discussion »

Credit: John Bragg

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me