Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

As a young boy, Jerry Woodall ‘60 took things apart to see how they worked, earning him the nickname “Tinker.” When he dismantled the family’s electric iron, his father sat Jerry down and told him not to take things apart unless he could put them back together. So Woodall focused on building, challenging himself to use every piece of his Lincoln Log set every time he created a new structure. And years later, when he was, as he puts it, “playing in the sandbox” in a lab at IBM, his passion for tinkering paid off: Woodall became one of the first people to produce new semiconductor materials and devices that would revolutionize the electronics industry.

Woodall grew up in a close-knit family in Takoma Park, MD. Undeterred by the fact that he was with born with only one useful eye, he pitched well in Little League, played Ping-Pong and tennis aggressively, and excelled in science in high school. A compelling pamphlet on nuclear fission fascinated him; envisioning himself as a nuclear physicist, he applied to MIT.

Woodall had never visited the Institute before he rode the overnight train from Washington, DC, to Back Bay Station and took a cab to Baker House in the fall of 1956. After a mediocre scholastic performance his freshman year, he struggled as a sophomore, flunking electricity and magnetism. (He would graduate with a C average.) But when he decided to major in metallurgy, he flourished under the guidance of his undergraduate thesis advisor, Professor Morris Cohen, a pioneer in materials science.

His social life improved when he joined the MIT choral society, became a backup pianist for the glee club, and was elected pledge master at his fraternity, Lambda Chi Alpha, where he’d helped carry out the famous Smoot-measuring exercise the year before. Woodall says that the idea sprang from an after-dinner discussion about the arbitrariness of units. To demonstrate this concept to the pledges, the assembled brothers came up with the idea of using Oliver Smoot, the shortest Lambda Chi pledge of the Class of 1962 at five feet seven inches tall, to measure the Harvard Bridge. Its length still stands at 364.4 Smoots plus or minus an ear.

After graduating in 1960, Woodall worked briefly as a staff engineer at Clevite Transistor Products. Two years later, he landed a job as a junior staff member at IBM’s new Watson Research Center in Yorktown Heights, NY. Morris Cohen recommended him strongly, urging an IBM personnel officer to ignore Woodall’s MIT grades because he had “a green thumb in a laboratory.”

Over the next five decades, Woodall coauthored 85 patents (mostly for IBM), published 365 articles in scientific journals, earned 30 consecutive annual IBM Invention Achievement Awards, and won an $80,000 prize from IBM for demonstrating the first working heterojunction, an interface between two semiconductor materials that would prove crucial in lasers, light-­emitting diodes, and other devices. In 1982, while still at IBM, he earned a PhD in electrical engineering from Cornell University. He became an IBM fellow, the highest honor an IBM researcher can achieve, in 1985.

0 comments about this story. Start the discussion »

Credit: John Bragg

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me