Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Well, ideally, you’d do a Pigovian tax–

No, not a Pigovian tax. A Pigovian tax is where you pay for the damage. Here, you’re not paying for the damage–you can’t pay for the damage. You’re using the tax to create a mode shift to a different form of energy generation. You are not paying an amount that allows somebody to suck the CO2 out of the air. Let’s just take the electric sector. If you imposed a 2 percent tax, you’d get the money for the R&D. And then you just take all the carbon-emitting plants, you look at their lifetime, and you say on a certain date this one has to be shut down, and when a new one is put in place, it has to be low-CO2-emitting.

That’s a regulatory approach, and it’s very clear. Remember what this is all about. This is about somebody who buys power plants, and who really buys power plants? Utility commissions really buy power plants. The utilities are really just middlemen who are given permission to actually do these projects. But the decision to get great recovery against rate payers, that’s made by utility commissions. These are the people. And a federal law saying you can’t buy plants that emit CO2 can force the hand of those utility commissions. This is all about plants, and the framework that exists for the 40 years that an energy plant exists. So when anybody that says that we need a carbon tax, if you really want to affect the behavior of the people that buy those plants, you’ve got to have certainty from years 10 to 50.

A tax and strong regulatory control are the only way to achieve–

No, no, you can do it. You have to do it with something that you believe will stay in place. If you said to a utility company executive, which is more likely to stay in place: a cap-and-trade thing, whose price will vary all over the map, that will have some international things that will be shown to be a waste of money? A regulatory thing about plant replacement over the next 50 years? Or something that’s trying to work through price? Which looks more black and white to somebody deciding to build power plants? The price will have variability: all these schemes do, because they have escape clauses, and they give away free permits to the politically advantaged and create new requirements for governmental revenue. So I’m perfectly happy with the carbon tax. We should have a carbon tax. It has the advantage that it also immediately sends a signal for efficiency. What we owe the developing world is this: we’re willing to pay high prices for energy plants above coal and drive prices down the curve so by the time they need to buy them, they don’t have to pay the high price. What it costs to have them overpay for electricity is measured in lives. We need to invent electricity technologies that they’ll be able to buy at super-good prices. There are some technologies that could get there. We need to pursue them all.

That sounds very rational, pragmatically feasible, and humane. It also sounds politically unlikely.

Which is more likely: a carbon tax with all sorts of markets and options and uncertainties about prices, and traders in the middle, and confusion about who initially gets the most advantage? Or a regulatory thing that says you mark every coal plant in the country with when it has to be retired, and a 2 percent tax to fund the R&D so that utilities know they can buy a plant that’s emitting hardly any CO2? Because the innovators are designing things for the power-plant buyers 10 years from now, who are looking at the regulatory and tax environment for the next 40 years. So I don’t know if anything will happen. I hope something does, but to be frank, there’s so much money cycling in and out of Washington that a bunch of it goes to fairly inefficient things. I mean, just look at the House bill in terms of the various groups that got free carbon credits. Raising energy prices by 2 percent and sending it to R&D activities seems easier in a weak economy than raising them 20 percent and cycling it through Washington. Now, 0 percent is the easiest option of them all, but unfortunately that doesn’t get us the solution to this problem, which is a long-term problem.

Will you and Nathan Myhrvold really build a traveling-wave reactor of TerraPower’s design? And if so, where and when?

We’re in discussions with basically everybody in the nuclear industry and every country involved. And no, TerraPower itself will not raise the money to build the reactor. We will partner with some mix of sovereign and private actors to get TP1, which is what we call our first reactor, and our dream–which is very ambitious and may not be achieved–is to build that by 2020. It’s more likely to be built in Asia than in North America or Europe.

We’ve heard China.

Well, China’s the most obvious one, and we’re certainly talking to them. It’s not clear enough at this stage that we’d put all of our eggs in one basket. They’re building over half the reactors, and they build them very quickly. It would be a great place if they chose to.

They’re building an extraordinary number of reactors.

Well, understand the Chinese strategy. They have two strategies. One is to pick a Gen 3 design and build a lot of them and get the price down and get really good at that. The other is to pick very few more radical designs and build some of those now so that they’re ready in the 2020 time frame, when a radical design may have better economics and better strategic benefits. In our case, infinite fuel is one of the benefits [a traveling-wave reactor can make its own fuel from nonfissile waste material]. But we also claim to have better economics than a Gen 3 reactor. A lot of reactors are designed without thinking about economics, and because we have higher temperatures and we get so much heat through our core, on paper–which is where we exist–we have better economics.

17 comments. Share your thoughts »

Credit: Brad Swonetz/Redux

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

Jason Pontin Editor

View Profile »

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me