Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

To reach this conclusion, they compared the productivity of two groups of scientists from 1998 through 2006: investigators at the Howard Hughes Medical Institute (HHMI) in Maryland and researchers given NIH grants. The HHMI scientists were encouraged to take risks and received five years of financial support, with a two-year grace period after funding was terminated. The standard NIH grants, known as R01 grants, lasted three to five years, and recipients were monitored more closely; funding ceased immediately if the grant was not renewed. The researchers found that papers by the HHMI scientists were far more likely to be heavily cited and covered a broader range of subjects. Those scientists also mentored more young colleagues who went on to win prizes.

“If you want people to branch out in new directions, then it’s important to provide for their long-term horizons, to give them time to experiment and potentially fail,” Azoulay says. “You can generate innovation, but the details matter. What you want to provide incentives for is future performance, not performance today.”

Naturally, the HHMI welcomed the findings. “HHMI has identified highly creative scientists and given them the freedom to pursue critical medical research, even if it takes them years and means a change of research direction,” says Avice Meehan, the institute’s vice president for communications and public affairs. (An NIH spokesman, Don Ralbovsky, says NIH staffers considered the study “interesting,” but he refrained from further comment until the paper was officially published.) But couldn’t it be that the HHMI recruited better scientists to begin with? That would be a version of the same problem Azoulay and Graff Zivin encountered when studying the effects of star scientists.

This time the researchers anticipated this potential objection from the start and designed their study accordingly. They identified 73 well-regarded HHMI researchers and found matching groups of high-flying scientists among the NIH awardees: one set of 393 who had won early-career prizes, and another group of 92 who had received so-called Merit funds, reserved for highly promising projects. The HHMI researchers produced twice as many papers in the top 5 percent of their fields in terms of citations, and three times as many in the top 1 percent, as the prize-winning NIH-backed scientists; they also published 50 percent more papers in the top 1 percent than the Merit recipients.

So it might be best just to hand scientists money and leave them alone after all–but now at least we have some empirical support for that approach. On the other hand, as Azoulay notes, scientific progress might still depend on a combination of radical insights and incremental advances. If so, there is not one inherently superior type of grant, and funding agencies should be looking for the right mix.

0 comments about this story. Start the discussion »

Credit: by Marc Rosenthal

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me