Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The dream of personalized medicine was one of the driving forces behind the 13-year, $3 billion Human Genome Project. Researchers hoped that once the genetic blueprint was revealed, they could create DNA tests to gauge individuals’ risk for conditions like diabetes and cancer, allowing for targeted screening or preëmptive intervention. Genetic information would help doctors select the right drugs to treat disease in a given patient. Such advances would dramatically improve medicine and simultaneously lower costs by eliminating pointless treatments and reducing adverse drug reactions.

Delivering on these promises has been an uphill struggle. Some diseases, like Huntington’s, are caused by mutations in a single gene. But for the most part, when our risk of developing a given condition depends on multiple genes, identifying them is difficult. Even when the genes linked to a condition are identified, using that knowledge to select treatments has proved tough (see “Drowning in Data”). We now have the 1.0 version of personalized medicine, in which relatively simple genetic tests can provide information on whether one patient will benefit from a certain cancer drug or how big a dose of blood thinner another should receive. But there are signs that personalized medicine will soon get more sophisticated. Ever cheaper genetic sequencing means that researchers are getting more and more genomic information, from which they can tease out subtle genetic variations that explain why two otherwise similar people can have very different medical destinies. Within the next few years, it will become cheaper to have your genome sequenced than to get an MRI (see “A Moore’s Law for Genetics”). Figuring out how to use that information to improve your medical care is personalized medicine’s next great challenge.


0 comments about this story. Start the discussion »

Credit: Leonard Lessin / Photo Researchers, Inc.

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me