Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

In the 1830s, as a young William and Mary professor researching green sand marl, a deposit that was used as fertilizer, ­William Barton Rogers was deluged with soil packets from Virginians responding to his articles on soil composition in the Farmer’s Register. Faced with far more samples than he could analyze, he invented an “Apparatus for analyzing Marl and the Carbonates in general” that farmers could build and use themselves.

The incident is typical of the scientist who would later found MIT. Intensely interested in both theory and practice, ­Rogers performed detailed empirical research on soil composition and developed theories of mountain formation–and found an audience for his work among Virginia farmers and European scientists alike. While geologists at the time were divided between Baconian fact collectors and Humboldtian theorists, Rogers ably navigated the conflicts between these groups.

“[Rogers’s] concern for the intersection of the practical, the theoretical, and the technological would become hallmarks of his plan for MIT,” writes A. J. Angulo in William Barton Rogers and the Idea of MIT, which chronicles how Rogers’s ideas developed amid contentious debates in science and higher education. Would geologists mainly observe and classify, or would they theorize? Would elite scientists dominate the advancement of knowledge, or would professional organizations democratize science? Would scientific education continue to emphasize recitation of texts, or would the new experimental approach prevail?

Rogers’s work in geology, chemistry, education, and the founding of early professional scientific organizations put him at the nexus of these fascinating conflicts, allowing Angulo to weave together many threads in the history of antebellum science and education. One chapter analyzes Rogers’s role in promoting Darwin’s theory of natural selection through public debates with Harvard’s Louis Agassiz in 1860. Rhetorically gifted, Rogers applied careful reasoning and linked evidence about fossils found in various geological formations around the world to counter Agassiz’s insistence that separate species were created through local divine intervention.

A year after those debates, Rogers received the charter to found MIT, one of the first schools to emphasize laboratory work for students. There, he would devote the rest of his life to developing an institution that struck a balance between the theoretical and the practical. Shortly before Rogers collapsed and died at the podium during his final commencement speech, in 1882, he proclaimed that the Institute’s curriculum closed “a wide separation” between theory and practice: “Now in every fabric that is made, every structure that is reared, they are closely united into one interlocking system.”

This examination of Rogers’s career covers and uncovers a great deal about the professionalization and Americanization of science and science education. “His life experiences tell us something new about how MIT emerged [and] what scientists thought about science and professionalization,” says Angulo.

0 comments about this story. Start the discussion »

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me