Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

In September 1955, just off the boat from Italy and not yet 17, I enrolled as a freshman at Harvard College. Luckily, I already knew English. Although I was born in Florence just before the outbreak of World War II, my family had taken refuge in New York during the conflict, not returning to my birthplace until 1947. Eight years later, when it was time for me to go to college, my parents decided I should do so in the United States. My trip to Cambridge began with their delivering me to Florence’s Santa Maria Novella train station and waving good-bye. The Ferrovie dello Stato, Italy’s train system, conveyed me to a boat at Le Havre, which in turn transported me to New York. Another train landed me in Boston. With a bulging suitcase in hand, I took the subway from South Station to Harvard Square.

I still remember my dismay when, expecting to be greeted by the inviting setting I had seen in pictures, I exited from underground to see nothing but traffic and busy stores. I timidly asked an elderly, professorial-looking passerby the whereabouts of Harvard. He answered, “You must be a freshman. Walk a few steps forward, turn to your right, and you will see a gate. Go through it!” The sight of the promised Harvard Yard reassured me. A room on the quad also portended well. But soon I received another shock, albeit a minor one: wearing a tie and jacket was obligatory at all meals. I came equipped with the latter, but I had no tie. Since this meant no meals, I immediately went out and bought a bow tie–the clip-on variety, so that I wouldn’t have to learn how to tie the knot.

During my first year of college I dutifully wrote home once a week, reporting on the progress I was making but glossing over some of my adjustment difficulties. In time I made close friends, many of whom were struggling with the same problems. My immediate academic goal was to learn physics, the discipline I had chosen. This didn’t turn out to be as easy as buying a bow tie: I was not the genius I had hoped to be. Nonetheless, after four years of serious endeavor, I was accepted by good graduate schools and chose to go to MIT. That choice was due largely to Francis Low, a physics professor from down the river who came to deliver an endowed set of lectures at Harvard during my senior year. Even though I didn’t understand much of what he was espousing, Harvard’s graduate students and faculty paid close attention to the equations he was writing on the blackboard and the intriguing Chew-Low scattering model he was presenting. It all sounded exciting; I checked with my faculty advisor, who agreed that going to MIT seemed like a good idea. Having little mechanical aptitude, I also decided that I would try to become a theoretical physicist.

In November 1959, my first year in graduate school, I heard that Owen Chamberlain and my uncle Emilio, an experimental physicist, had won that year’s Nobel Prize in physics for their discovery of the antiproton. The existence of antimatter particles–identical to the electron and the proton in mass but opposite in electric charge–had been proposed almost 30 years earlier by Paul Dirac as a result of an attempt to combine quantum mechanics with the special theory of relativity in a single beautiful equation. Most physicists initially regarded this idea as wildly speculative, but the 1932 discovery of the antielectron (a.k.a. the positron) proved that Dirac was right. Finding antiprotons took another quarter-century because their production in the laboratory required powerful particle accelerators, which were not available until the 1950s. Unlike the discovery of the antielectron, which had come as a shock and a surprise, proof of the antiproton was expected. But it was a crucial confirmation of the equations that theoretical physicists were now using as common tools.

Pages

0 comments about this story. Start the discussion »

Credits: Bettmann/Corbis, Popperfoto/Getty Images, Photograph by Samuel Goudsmit, courtesy AIP Emilio Segre Visual Archives, Goudsmit Collection

Tagged: Energy, physics, science, nuclear physics, CERN

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me