Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Suzanne Lorenz never thought she’d have to choose between work and family. But in April 2001, expecting her third child, she closed up her office and walked away from a 17-year career. Years of dealing with an employer that offered minimal support for family needs, a salary that persistently lagged behind those of her male peers, and the pressure of trying to juggle her roles as both a dedicated scientist and a dedicated mother had finally worn her out. She saw little alternative but to quit.

Had Lorenz been a lawyer, businesswoman, or government official, the gender bias she faced would be troubling enough. But she was an assistant professor of research medicine in a top-ranked department at a midwestern university. When she quit her job, she left behind a half-million-dollar laboratory, several hundred thousand dollars’ worth of training and experience, and a productive research program seeking a cure for blood-pressure disorders. Her story offers vivid evidence that when female scientists and engineers lose the struggle to balance career and family, scientific resources are lost as well.

The attrition of women from jobs in science, technology, engineering, and mathematics is a decades-old problem. Analyses such as the 1999 Study on the Status of Women Faculty in Science at MIT have consistently found that female scientists have lower salaries, smaller lab spaces, and less access to mentors and professional networks than their male counterparts, which puts them at a disadvantage in the race for grants, publications, patents, tenure, and promotions. Adding children to the picture makes it even harder for women to compete. The result is a system that all but forces women out of science careers.

The problem may be old, but it can no longer be ignored. An estimated 3,000 PhD-trained women opt out of the scientific workforce every year. At that rate, attrition isn’t just a feminist issue: it costs the United States more than a billion dollars a year and threatens our economic competitiveness.

National Capabilities in Decline

After decades at the technological frontier, the United States now faces increasing competition from Israel, Taiwan, Finland, Ireland, and parts of the developing world. A U.S. high-tech trade surplus that reached $22.4 billion in 1990 melted into a $134.6 billion trade deficit by 2005. Meanwhile, annual U.S. productivity growth has slowed since 2000, and fewer American small businesses are being formed in every high-tech sector. These shifts are especially troubling given that economists credit new technology with half of America’s economic growth from the late 1940s to 1985.

Although decreased science funding is partly to blame, the main source of the problem appears to be a drastic decline in the number of competitive American workers and entrepreneurs in scientific and technical fields. Fewer U.S. college students pursued engineering degrees in 2005 than in 1985, despite a rising undergraduate population. In 2000, more than 20 countries had higher percentages of 24-year-olds with degrees in science and engineering. The number of Americans earning PhDs in science and engineering peaked in 1997 and then declined steadily over the next five years. Although U.S. PhDs increased between 2002 and 2005, the number of new PhDs is still nearly 6 percent lower than it was in 1997. As a result, even top U.S. high-tech firms now look abroad for talent, moving R&D and production operations to countries like India, Israel, and China. As an Intel spokesperson recently put it, “We go where the smart people are.” A 2006 Duke University survey of American firms that outsource such jobs abroad found that approximately 40 percent considered the U.S. supply of engineers inadequate.

Pages

0 comments about this story. Start the discussion »

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »