Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The Great Filter, then, would have to be something more dramatic than run-of-the mill societal collapse: it would have to be a terminal global cataclysm, an existential catastrophe. An existential risk is one that threatens to annihilate intelligent life or permanently and drastically curtail its potential for future development. In our own case, we can identify a number of potential existential risks: a nuclear war fought with arms stockpiles much larger than today’s (perhaps resulting from future arms races); a genetically engineered superbug; environmental disaster; an asteroid impact; wars or terrorist acts committed with powerful future weapons; super­intelligent general artificial intelligence with destructive goals; or high-energy physics experiments. These are just some of the existential risks that have been discussed in the literature, and considering that many of these have been proposed only in recent decades, it is plausible to assume that there are further existential risks we have not yet thought of.

The study of existential risks is an extremely important, albeit rather neglected, field of inquiry. But in order for an existential risk to constitute a plausible Great Filter, it must be of a kind that could destroy virtually any sufficiently advanced civilization. For instance, random natural disasters such as asteroid hits and supervolcanic eruptions are poor Great Filter candidates, because even if they destroyed a significant number of civilizations, we would expect some civilizations to get lucky; and some of these civilizations could then go on to colonize the universe. Perhaps the existential risks that are most likely to constitute a Great Filter are those that arise from technological discovery. It is not far-fetched to imagine some possible technology such that, first, virtually all sufficiently advanced civilizations eventually discover it, and second, its discovery leads almost universally to existential disaster.

So where is the Great Filter? Behind us, or not behind us?

If the Great Filter is ahead of us, we have still to confront it. If it is true that almost all intelligent species go extinct before they master the technology for space colonization, then we must expect that our own species will, too, since we have no reason to think that we will be any luckier than other species. If the Great Filter is ahead of us, we must relinquish all hope of ever colonizing the galaxy, and we must fear that our adventure will end soon–or, at any rate, prematurely. Therefore, we had better hope that the Great Filter is behind us.

What has all this got to do with finding life on Mars? Consider the implications of discovering that life had evolved independently on Mars (or some other planet in our solar system). That discovery would suggest that the emergence of life is not very improbable. If it happened independently twice here in our own backyard, it must surely have happened millions of times across the galaxy. This would mean that the Great Filter is less likely to be confronted during the early life of planets and therefore, for us, more likely still to come.

If we discovered some very simple life-forms on Mars, in its soil or under the ice at the polar caps, it would show that the Great Filter must come somewhere after that period in evolution. This would be disturbing, but we might still hope that the Great Filter was located in our past. If we discovered a more advanced life-form, such as some kind of multicellular organism, that would eliminate a much larger set of evolutionary transitions from consideration as the Great Filter. The effect would be to shift the probability more strongly against the hypothesis that the Great Filter is behind us. And if we discovered the fossils of some very complex life-form, such as a ­vertebrate-­like creature, we would have to conclude that this hypothesis is very improbable indeed. It would be by far the worst news ever printed.

Yet most people reading about the discovery would be thrilled. They would not understand the implications. For if the Great Filter is not behind us, it is ahead of us. And that’s a terrifying prospect.

So this is why I’m hoping that our space probes will discover dead rocks and lifeless sands on Mars, on Jupiter’s moon Europa, and everywhere else our astronomers look. It would keep alive the hope of a great future for humanity.

120 comments. Share your thoughts »

Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration

Tagged: Communications, robotics, Mars, rovers, extraterrestrial life, exploration

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me