Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

If building a von Neumann probe seems very difficult–well, surely it is, but we are not talking about something we should begin work on today. Rather, we are considering what would be accomplished with some very advanced technology of the future. We might build von Neumann probes in centuries or millennia–intervals that are mere blips compared with the life span of a planet. Considering that space travel was science fiction a mere half-century ago, we should, I think, be extremely reluctant to proclaim something forever technologically infeasible unless it conflicts with some hard physical constraint. Our early space probes are already out there: Voyager 1, for example, is now at the edge of our solar system.

Even if an advanced technological civilization could spread throughout the galaxy in a relatively short period of time (and thereafter spread to neighboring galaxies), one might still wonder whether it would choose to do so. Perhaps it would prefer to stay at home and live in harmony with nature. However, a number of considerations make this explanation of the great silence less than plausible. First, we observe that life has here on Earth manifested a very strong tendency to spread wherever it can. It has populated every nook and cranny that can sustain it: east, west, north, and south; land, water, and air; desert, tropic, and arctic ice; underground rocks, hydrothermal vents, and radioactive-waste dumps; there are even living beings inside the bodies of other living beings. This empirical finding is of course entirely consonant with what one would expect on the basis of elementary evolutionary theory. Second, if we consider our own species in particular, we find that it has spread to every part of the planet, and we have even established a presence in space, at vast expense, with the International Space Station. Third, if an advanced civilization has the technology to go into space relatively cheaply, it has an obvious reason to do so: namely, that’s where most of the resources are. Land, minerals, energy: all are abundant out there yet limited on any one home planet. These resources could be used to support a growing population and to construct giant temples or supercomputers or whatever structures a civilization values. Fourth, even if most advanced civilizations chose to remain nonexpansionist forever, it wouldn’t make any difference as long as there was one other civilization that opted to launch the colonization process: that expansionary civilization would be the one whose probes, colonies, or descendants would fill the galaxy. It takes but one match to start a fire, only one expansionist civilization to begin colonizing the universe.

For all these reasons, it seems unlikely that the galaxy is teeming with intelligent beings that voluntarily confine themselves to their home planets. Now, it is possible to concoct scenarios in which the universe is swarming with advanced civilizations every one of which chooses to keep itself well hidden from our view. Maybe there is a secret society of advanced civilizations that know about us but have decided not to contact us until we’re mature enough to be admitted into their club. Perhaps they’re observing us as if we were animals in a zoo. I don’t see how we can conclusively rule out this possibility. But I will set it aside in order to concentrate on what to me appear more plausible answers to Fermi’s question.

The more disconcerting hypothesis is that the Great Filter consists in some destructive tendency common to virtually all sufficiently advanced technological civilizations. Throughout history, great civilizations on Earth have imploded–the Roman Empire, the Mayan civilization that once flourished in Central America, and many others. However, the kind of societal collapse that merely delays the eventual emergence of a space-colonizing civilization by a few hundred or a few thousand years would not explain why no such civilization has visited us from another planet. A thousand years may seem a long time to an individual, but in this context it’s a sneeze. There are probably planets that are billions of years older than Earth. Any intelligent species on those planets would have had ample time to recover from repeated social or ecological collapses. Even if they failed a thousand times before they succeeded, they still could have arrived here hundreds of millions of years ago.

122 comments. Share your thoughts »

Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration

Tagged: Communications, Robotics, robotics, Mars, rovers, extraterrestrial life, exploration

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me