Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The semiconductor industry is great at miniaturizing silicon devices and packing huge numbers of them into very small spaces. But for some applications, such as big-screen displays, it’s helpful if transistors and other silicon-based devices are distributed relatively sparsely across many centimeters or even meters. Traditionally, cheap methods for distributing electronics over large areas have produced low-­performance devices; improving performance has required lots of expensive silicon.

Now Peter Peumans, a professor of electrical engineering at Stanford University, and his colleagues have developed small silicon chips that can be mechanically expanded to cover large areas, including curved surfaces such as the one pictured above. The chips consist of discs of sili­­con with silicon wire spooled around them. Each disc can incorporate transistors, pressure sensors, or tiny solar cells. When the corners of the chip are pulled, the wires coiled around the silicon discs unwind. As they do, the discs, which start out nearly touching each other, spread apart. The result is a netlike array of silicon devices.

Peumans is working with Boeing to put crack-­detecting sensors between layers of structural composite materials on aircraft. And he founded NetCrystal in Mountain View, CA, to make photovoltaic panels that spread out islands of photovoltaic chips in a way that exposes them to more sunlight, without the need for focusing lenses or mirrors. What’s more, distributed high-performance transistors could control pixels in next-generation displays, such as those based on organic light-­emitting diodes.

0 comments about this story. Start the discussion »

Credit: Jonathan Sprague

Tagged: Computing, Materials

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me