Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Along the way, Berry and his colleagues had to soup up the activity of certain genes to increase the output of specific intermediate molecules. They also had to determine how to selectively block other metabolic pathways so that their microbes would stay focused on producing hydro­carbons. And they figured out how to make the microörganisms secrete the final product in such a way that it could easily be collected.

“David is responsible in large part for LS9’s intellectual-property real estate,” says Noubar Afeyan, Flagship’s CEO. “If you strip away his contributions, there’s no company.”

Since the technology is proprietary and still in the early stages of development, Berry won’t identify the types of organisms and the specific cellular processes involved. LS9 has been optimizing its system and trying to increase the yields of its designer biofuels at its California facility. Current yields in the lab are an order of magnitude lower than those for ethanol produced from cellulose, Afeyan says, but the company hopes to reach a comparable yield within a year.

Nonetheless, LS9 has no products so far and many ­hurdles to surmount. Berry’s system, for example, is designed to exploit glucose-based feedstocks such as cellulose. Berry says he is “agnostic” about what source of cellulose might drive the LS9 system on an industrial scale; he lists switchgrass, wood chips, poplar trees, and Miscanthus, a tall grass similar to sugarcane, as potential sources of biomass. But a cost-­effective and efficient source of cellulose is one of the more significant bottlenecks in the production of any biofuel.

Despite these uncertainties, Berry’s method offers many of the advantages of biofuels in general. The raw feedstock would be agricultural and homegrown; it would be renewable; and it would, in principle, provide a more environmentally friendly source of energy than traditional crude oil (which requires smoke-belching refineries). With microbes doing all the work, fuels could be produced in large fermentation tanks of the sort used by biotech companies.

The biological synthesis of hydrocarbons is “a tech­nology with really game-changing potential,” Berry says. “It has security benefits. It has sustainability benefits. And the value of that, on top of a cost benefit, makes it a very compelling technology.” And one of the most compelling parts of the story behind that technology is that it was developed by a doctor in his 20s.

View the entire list of TR35 winners.

1 comment. Share your thoughts »

Credit: Mark Ostow

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me