Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The most popular approaches to saving the planet from our addiction to oil borrow energy from wind, waves, plants, or the sun. Now, a less obvious source has emerged as a feasible alternative. Structures the size of small power plants could be used to tap into a hidden store of underground energy, drawing fluid up through narrow holes several kilometers deep. And that fluid wouldn’t be oil but plain old water.

In January, an MIT-led panel of scientists, economic experts, and engineers released The Future of Geothermal Energy, a federally funded 372-page report calling for a national effort to exploit the heat of subterranean rock. The authors, led by MIT chemical-engineering professor ­Jefferson ­Tester, PhD ‘71, contend that given technological developments and recent successes abroad, geothermal could provide a significant amount of energy in the coming decades.

Geothermal systems extract energy from water exposed to hot rock deep beneath the earth’s surface. Tester says that an R&D investment of less than $1 billion would make geothermal economically viable–and, by 2050, capable of supplying at least 100 gigawatts of electricity, or 10 percent of today’s entire U.S. generating capacity. Better yet, geothermal uses relatively unobtrusive surface equipment, produces almost no emissions, draws on a renewable energy supply, and has a very limited environmental impact.

Tester doesn’t think the government’s current interest in geothermal is just part of an alternative-energy fad, nor does he think it will fade if gas prices drop. “Things are different now,” he says. “There are more reasons why we should evolve to a new energy system. Part of it is security-related, part of it is environmental, but part of it is just the recognition that a lot of folks in the U.S. are dependent on low-cost energy, and we’re too dependent right now on a few sources.”

Today, 50 U.S. geothermal plants are using steam or hot water from the earth’s crust to crank out almost three gigawatts of electricity. But these sites, located in California, Hawaii, Utah, and Nevada, are blessed with ideal conditions: the hot rock is relatively close to the surface, so it’s accessible without drilling very deep; there are plenty of natural cracks in the rock; and there’s an abundant supply of water already flowing through those cracks–in most cases carrying steam to the surface naturally. Unfortunately, there are not enough such sites in the United States to satiate much of our appetite for energy.

For this reason, the geothermal report focuses on a technology called enhanced or engineered geothermal systems (EGS), which doesn’t require ideal subsurface conditions. The specifics vary by site, but installing an EGS plant typically involves drilling a 10- to 12-inch-wide, three- to four-kilometer-deep hole, expanding existing fractures in the rock at the bottom of the hole by pumping down water under high pressure, and drilling a second hole into those fractures. (The holes are thousands of feet apart at depth but can be quite close on the surface.) Water pumped down one hole courses through the gaps in the rock, heats up, and flows back to the surface through the second hole. Finally, a plant harvests the heat and circulates the cooled water back down into the cracks. Theoretically, EGS could work anywhere, even in the middle of Boston. You’d just have to drill deeper–perhaps seven kilometers or more. “There’s hot rock everywhere,” says Chad Augustine, a PhD candidate in Tester’s lab and an associate member of the EGS panel. “It’s just a matter of how much it costs to do it, how deep you have to go to get it.”

Economic viability–not whether the engineering works–has been the big question with EGS. Can it compete on price with oil, or even solar and wind? The geothermal report points to promising projects like one at an Australian site called Cooper Basin, where engineers tapped into 250 ºC granitic rock four kilometers below ground. Past projects, including one at Fenton Hill, NM, that Tester was involved with for more than 20 years, proved that EGS is technically feasible. But at Cooper Basin, the hot water rushed up to the surface at an impressively high rate of production, achieving one-third to one-half of the flow capacity at which EGS could compete with other energy sources–a major step forward.

0 comments about this story. Start the discussion »

Credit: Christopher Harting

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me