Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Alfred came from an old Valais family that long owned a bank in Sion. When he was less than a year old his banker father tragically died during the great influenza epidemic of 1918. Much later a minor inheritance let Alfred buy the sleek Bentley that he parked across the Cam on land adjacent to the school for the famed King’s College boys’ choir. An even greater source of pride than his car was Albert’s election to the British Alpine Club in 1950. His formidable ascents of the south face of the Taschhorn and the north ridge of the Dent Blanche led to an invitation to join the 1951 Swiss Everest reconnaissance expedition. Regretfully, he had to decline, giving priority to his research efforts in the Molteno Institute that led, in 1952, to a research fellowship at King’s. Climbing, however, always remained essential to his psyche. In the summer of 1954 he joined in the Alpine Club’s reconnaissance of Pakistan’s Rakaposhi, at almost 8,000 meters high one of the Karakoram’s most daunting peaks.

Francis was keenly awaiting the arrival of my successor as the unit’s geneticist, the South African-born Sydney Brenner. We first met when he was working for a PhD at Oxford following medical training in Johannesburg. In the spring of 1953, Sydney was among those to have come to Cambridge to have a peek at our big molecular model of the double helix. He entered our lives more importantly, however, during the summer of 1954, when Francis and I were at Woods Hole on Cape Cod, talking genetic codes with the Russian-born big-bang theoretical physicist George Gamow. Then learning bacterial genetics at Cold Spring Harbor, Sydney came to Woods Hole for several days, greatly impressing Gamow and Francis by his quickness to catch on to their ideas and to propose experiments to test them.

Gamow, then a professor at George Washington University, was first drawn to the double helix in the summer of 1953, when he read our second Nature paper on the subject (“Genetical Implications of the Structure of DNA”). By early 1954, some of his seemingly wacky initial ideas had crystallized into a precise mechanics for the genetic code by which overlapping groups of three nucleotides coded for successive amino acids along polypeptide chains. On an early May 1954 visit to Berkeley, where George was on sabbatical, I proposed that we form a 20-person code-seeking club, one member for every amino acid. George instantly reacted positively, much anticipating designing a tie and stationery for our RNA Tie Club.

Though there was never a convention of all its members, “notes” that circulated among the RNA Tie Club greatly advanced thought about genetic codes. The most famous of these notes, by Francis, in time would totally change the way we thought about protein synthesis. In January 1955, Francis wrote to the club correctly suggesting that amino acids, prior to being incorporated in polypeptide chains, would attach to small RNA adaptors that in turn bind to template RNA molecules. For each amino acid, Francis postulated, there must exist a specific adaptor RNA (now called transfer RNA). In the absence of any experimental evidence for small RNA, much less their chemical binding to amino acids, even Francis could not long remain buoyant about his “adaptors.” Six months were to pass before he was to regain a manic mood, but this time it was over a 3-D model for collagen that he and Alex Rich built over the summer of 1955.

Alex returned in December to his job at the National Institutes of Health outside Washington, DC, and Francis and I focused for the winter of 1956 on the structures of small spherical RNA viruses, outlining how their cubic symmetry resulted from the regular aggregation of smaller asymmetrical protein building blocks. How their single, long RNA chains were organized with their polyhelical protein shells remained to be seen. Our last time as a team of two was at a Johns Hopkins University-organized symposium in mid-June 1956, entitled “The Chemical Basis of Heredity.” Upon arriving at the Hotel Baltimore, Francis jubilantly pointed out that we had been assigned adjacent rooms in the top-floor presidential suite.

After that occasion, staying at the top was to be a challenge we would have to face separately.

0 comments about this story. Start the discussion »

Credit: Andreas Feininger/Time-Life Pictures/Getty Images

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me