Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Of course, humans are radically slower than computers. Cognitivists argue that sure, you know what executing low-level instructions slowly is like; but only when you do them very fast is it possible to create a new conscious mind. Sometimes, a radical change in execution speed does change the qualitative outcome. (When you look at a movie frame by frame, no illusion of motion results. View the frames in rapid succession, and the outcome is different.) Yet it seems arbitrary to the point of absurdity to insist that doing many primitive operations very fast could produce consciousness. Why should it? Why would it? How could it? What makes such a prediction even remotely plausible?

But even if researchers could make a conscious mind out of software, it wouldn’t do them much good.

Suppose you could build a conscious software mind. Some cognitivists believe that such a mind, all by itself, is AI’s goal. Indeed, this is the message of the Turing test. A computer can pass Turing’s test without ever mingling with human beings.

But such a mind could communicate with human beings only in a drastically superficial way.

It would be capable of feeling emotion in principle. But we feel emotions with our whole bodies, not just our minds; and it has no body. (Of course, we could say, then build it a humanlike body! But that is a large assignment and poses bioengineering problems far beyond and outside AI. Or we could build our new mind a body unlike a human one. But in that case we couldn’t expect its emotions to be like ours, or to establish a common ground for communication.)

Consider the low-energy listlessness that accompanies melancholy, the overflowing jump-for-joy sensation that goes with elation, the pounding heart associated with anxiety or fear, the relaxed calm when we are happy, the obvious physical manifestations of excitement–and other examples, from rage to panic to pity to hunger, thirst, tiredness, and other conditions that are equally emotions and bodily states. In all these cases, your mind and body form an integrated whole. No mind that lacked a body like yours could experience these emotions the way you do.

No such mind could even grasp the word “itch.”

In fact, even if we achieved the bioengineering marvel of a synthetic human body, our problems wouldn’t be over. Unless this body experienced infancy, childhood, and adolescence, as humans do–unless it could grow up, as a member of human society–how could it understand what it means to “feel like a kid in a candy shop” or to “wish I were 16 again”? How could it grasp the human condition in its most basic sense?

A mind-in-a-box, with no body of any sort, could triumphantly pass the Turing test–which is one index of the test’s superficiality. Communication with such a contrivance would be more like a parody of conversation than the real thing. (Even in random Internet chatter, all parties know what it’s like to itch, and scratch, and eat, and be a child.) Imagine talking to someone who happens to be as articulate as an adult but has less experience than a six-week-old infant. Such a “conscious mind” has no advantage, in itself, over a mere unconscious intelligence.

70 comments. Share your thoughts »

Credit: Eric Joyner

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me