Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

It’s easy to see how a detailed mirror world might bring a tactical advantage to a large corporation, government agency, or military force–for example, by making it easier for the Wal-Marts of the future to track merchandise from factory to warehouse to retail shelf, or explore what-if scenarios such as the impact of a major storm on the supply chain. But when mirror worlds are joined by a third technology stream–what’s being called “mobile augmented reality”–they will become even more indispensable.

Mobile augmented reality is a way of using the data underlying mirror worlds without experiencing those worlds immersively. The extensive 3-D simulations in mirror worlds will, in the words of the Metaverse Roadmap, be draped over the real world and accessed locally in 2-D through location-aware mobile devices such as wireless phones. Even the screen of a GPS-enabled camera phone could serve as a temporary window into the Metaverse. Carry it with you on your next house-hunting expedition, for example, and it could connect to real-estate databases containing 3-D floor plans and information on sale prices, property taxes, and the like for every house on every block. Or point it at one of the turbines on your wind farm and see Google Earth’s virtual version of the structure, supplemented by engineering specifications, maintenance history, and a graph of hourly power output. Finnish cell-phone giant Nokia, French startup Total Immersion, and others are building prototype augmented-reality systems now and expect the big wireless carriers to take an interest soon (see “Augmented Reality” in “Emerging Technologies 2007,” March/April).

It would be far too simple to say that the Metaverse will consist of Linden Lab’s virtual world with maps, or Google’s mirror world with avatars, or some augmented-reality slice of either one. In fact, Second Life and Google Earth are likely to endure just as they are (with the usual upgrades) well into the Metaverse era. What’s coming is a larger digital environment combining elements of all these technologies–a “3-D Internet,” to use the term preferred by David Rolston, CEO of Forterra Systems, a company in San Mateo, CA, that makes immersive training simulations for the U.S. Department of Defense and other first-responder agencies. People will enter this environment using PC-based software similar to the programs that already grant access to Second Life and Google Earth. These “Metaverse browsers” will be to the 3-D Internet what Mosaic and Netscape were to the dot-com revolution–tools that both provide structure (by defining what’s possible) and enable infinite experimentation.

“There will be a bunch of different worlds, owned, controlled, and operated by different organizations,” Rolston predicts. “They will be built on different platforms, and you will have community standards about how you can connect these worlds, and open-source software that carries you between them.” The word “Metaverse” will refer to both the overarching collection of these worlds and the main port of entry to them, a sort of Grand Cyber Station that links to all other destinations. The central commons itself could be designed as a mirror world or a virtual world or some interleaving of the two: people logging in to the Metaverse might want it to look like Manhattan or the Emerald City of Oz, depending on the task at hand. But either way, partisans say, the full Metaverse will encompass thousands of individual virtual worlds and mirror worlds, each with its own special purpose. To borrow a trope from corporate networking, it will be an “interverse” connecting many local “intraverses.”

Rolston has already had plenty of experience building such separate worlds. Some of Forterra’s simulations are “geotypical”–plausible imitations of generic landscapes and urban environments–and others are “geospecific,” reproducing actual places such as the entrances to Baghdad’s battered Green Zone.

Deleted Scene

The worlds of the Metaverse will be much more diverse but still bridgeable, Rolston predicts. “Portions of this 3-D Internet will be anchored to the real planet and will involve real-world activities, and others will not be,” he says. “People will move freely between representations of the real world and representations of synthetic fantasy worlds, and feel equally comfortable in both.”

For people who haven’t spent much time in a 3-D world, of course, it’s hard to imagine feeling comfortable in either. But such environments may soon be as unavoidable as the Web itself: according to technology research firm Gartner, current trends suggest that 80 percent of active Internet users and Fortune 500 companies will participate in Second Life or some competing virtual world by the end of 2011. And if you take a few months to explore Second Life, as I have done recently, you may begin to understand why many people have begun to think of it as a true second home–and why 3-D worlds are a better medium for many types of communication than the old 2-D Internet.

16 comments. Share your thoughts »

Credit: Technology Review

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me