Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Like both Lewis’s committee and Vest’s task force, the UEC task force drew on the principles that motivated MIT’s genesis. Rogers believed in learning by doing, and in the value of combining a professional education with a basic liberal­-­arts education at the undergraduate level. The UEC task force, which spent two and a half years crafting its recommendations, sought to adapt these principles to the present day.

One goal is to add choice and variety to the core science requirement, which currently includes two semesters of physics, two of calculus, and a semester each of biology and chemistry, plus two electives. The question the UEC task force faced, says Robert Silbey, dean of the School of Science and head of the UEC panel (as well as cochair of Vest’s 1996 panel), is “What are the fundamental [science, math, and engineering] subjects students should be exposed to? We want to signal to students that there is a lot more, that the fundamentals are not simply six [classes].” Under the UEC plan, students would still take two semesters of calculus, but the traditional physics requirement would be shortened to one semester. Each student would then choose a single class in five out of six categories: chemical sciences, computation and engineering, life sciences, mathematics, physical sciences, and project-based first-year experiences. “It is impossible for us in four years to give students everything they need for life,” ­Silbey says. “One of the fundamentals … is that students should leave MIT with a passion for learning.”

The panel felt, however, that the humanities curriculum needed more structure. Students now take eight classes, with requirements meant to ensure breadth and depth; two classes must fulfill a communication requirement. “Freshmen know what they have to do in science,” says task force member ­Deborah Fitzgerald, dean of the School of Humanities, Arts, and Social Sciences (SHASS). But when freshmen choose their classes for the first semester, “in the humanities, it’s ‘Here are 75 classes–pick one.’ We don’t have a clear presence.” The UEC curriculum would require expository writing and one class in each of three categories: humani­ties, arts, and social sciences. One of these three classes would be part of a proposed First-Year Experience Program, a “big ideas” class that would help students make the transition from high-school to university academics. Students would also take four SHASS classes within a concentration of their choice.

A First-Year Experience class on war, for example, might be taught by professors in urban studies, history, and political science. “Each would run a small section with its own reading list on big ideas in their field about war,” says Fitzgerald. “Then the class would come together and hear a luminary talk on their research, see a movie, go on a field trip.” Students might meet Tim O’Brien, the author of the Vietnam War book The Things They Carried; hear a Civil War historian; or meet a solider who served in Iraq.

Such classes should “create a buzz, so students continue the discussion outside class,” says Fitzgerald. She says the humanities school will develop such classes regardless of whether they become a requirement; one motivation is to expose students to the basic methodologies in each of SHASS’s disciplines. Students learn the experimental methods of chemistry in their chemistry labs, she says, but they don’t learn how a historian or an anthropologist approaches a research problem. “Being able to do problem sets is not the only tool you need,” says Fitzgerald. “The ability to perform a critical analysis of a text, to be creative when you’re stuck, to be diplomatic–these are high-level fundamental skills” that the SHASS disciplines foster and that MIT must make sure its students learn.

0 comments about this story. Start the discussion »

Credit: Maki and Associates

Tagged: MIT

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me