Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Scientists at the Netherlands Institute for Cultural Heritage, a research organization for art conservation, have developed a unique way of identifying works of art. Called FingArtPrint, the project is the result of a collaboration among European universities, museums, and technology companies, and it was funded by the European Union.

FingArtPrint could help make museums and collectors feel secure about loaning their works of art, which can be traced via their “fingerprints.” But the project’s biggest impact is expected to be in slowing the market in stolen art and artifacts, which is the second most lucrative underground business in the world and worth an estimated $6 billion a year, according to the Federal Bureau of Investigation.

“If people are in the business of trafficking, and they know that institutions are starting to identify objects better, then hopefully they’ll have a much more difficult time getting rid of their inventory,” says Sharon Little, a Canadian textile conservator and the coordinator of a working group of the International Council of Museums Committee for Conservation (ICOM-CC) that explores ways to prevent trafficking. A related use of FingArtPrint might be to identify objects in archaeological sites that can’t be excavated or cataloged because of lack of funding or dangerous working conditions. Once those objects show up on the market, curators and collectors will know that they’ve been looted.

FingArtPrint works by creating a unique fingerprint of the surface of paintings, sculptures, coins, books, tapestries, and ceramics. First the researcher selects a predetermined part of the object to inspect measuring one square centimeter. The color of each pixel in the area is mapped with a scientific-grade digital camera that is typically used in industry to ensure the crispness of liquid crystal instrument displays or to examine flat panels for defects.

The roughness of the area is also measured, using a powerful microscope known as a white-light confocal profilometer. Typically, this tool is used in industrial applications to scan surfaces for damage or erosion. The microscope scans micron by micron; at such a high resolution, it effectively turns what appears two-dimensional to the unaided human eye into a three-dimensional landscape. “At that scale,” says William Wei, the director of the FingArtPrint project, “such information is unique to that object.”

Together, the color and roughness data make a fingerprint that can be stored in a computer database. A customs official, museum curator, or potential buyer who questions an item’s authenticity could capture a fingerprint and try to match it with one in the database.

0 comments about this story. Start the discussion »

Credit: Ton Claasens (Kröller-Müller Museum) and Galerij Fons Welters

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me