Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

In 2001, Rutledge Ellis-Behnke, PhD ‘03, a research scientist in the Department of Brain and Cognitive Sciences, was doing surgical research on hamster brains. He and his colleagues were using a liquid made of protein fragments known as peptides to encourage the regeneration of neural tissue, a prospective treatment for stroke. In early experiments, the technique appeared to promote the strengthening and rewiring of traumatized neural regions in rodents. But in the lab one day, something seemed awry.

“I kept saying to Rutledge, ‘Check the animal. He’s not bleeding. Is he dead?’” says Gerald Schneider, an MIT professor of brain and cognitive sciences. “But no, he was still alive.”

In that moment of serendipity, Ellis-Behnke saw that the peptide liquid had a second, equally profound effect: it halted bleeding almost immediately.

Through a string of experiments at the University of Hong Kong, he discovered that when the liquid is applied to a surgical wound in a mouse or hamster, the peptides self-assemble into a nanoscale barrier that seals the wound. Once the wound heals, the nontoxic gel is broken down into molecules that cells use for tissue repair, Ellis-Behnke explains.

The researchers (including Kwok-Fai So, PhD ‘77, head of the Department of Anatomy at the University of Hong Kong) published the results in October 2006 in the journal Nanomedicine, noting that this was the first time nanotechnology had been used to halt bleeding in damaged blood vessels without clotting. “We have found a way to stop bleeding in less than 15 seconds that could revolutionize bleeding control,” Ellis-Behnke says.

Ellis-Behnke and So are now carrying out experiments on pigs. They hope that their gel will prove useful for humans and might replace the saline, clamps, and sponges used during surgery, cutting down on operating-room time spent stanching bleeding. Peptides could also be applied to battlefield wounds or used as what the researchers call a “molecular band-aid” in the brains of stroke patients.

The researchers are also pushing ahead with their work on regenerating neural networks. That’s led to 20-hour days for Ellis-Behnke, not to mention exhausting shuttling from his home in Canton, MA, to China. But there’s an upside: along the way, his fertile mind has absorbed talents like microsurgery (“It’s basically plumbing”) and speaking Chinese (“It’s mostly the taxi-restaurant variety”).

0 comments about this story. Start the discussion »

Credit: Donna Coveney/MIT

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me