Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Jay Forrester, SM ‘45, arrived at MIT in 1939 and fought World War II in the Servomechanism Laboratory. In the basement of Building 10, he helped design hydraulic controls for radar antennas and gun mounts. As the war in Europe drew to a close, many of the Servo Lab’s military projects began winding down. So Forrester submitted his thesis and prepared to move on.

But Luis de Florez ‘11, who headed the navy’s Special Devices Section and would soon be named rear admiral, had been talking with his alma mater about designing a precision flight simulator for the navy. He envisioned a general-­purpose machine that could be used to test proposed designs of new airplanes. Intrigued, ­Forrester stayed at MIT to lead the project. In late 1944, he began conceptualizing an analog computer that would run the Airplane Stability and Control Analyzer. (Digital computers were then virtually nonexistent.) He worked on it for a year, but “it didn’t seem feasible to build an analog computer to do what was required,” he says.

In the fall of 1945, Forrester bumped into Perry Crawford ‘39, SM ‘42, on the steps of 77 Mass. Ave. He told Crawford, who was about to leave MIT to work for de Florez, of the problems his lab was having with the flight simulator. Crawford suggested considering digital computing: it was more precise and could enable parallel processing. Being, as Forrester puts it, “completely uninhibited by organizational charts,” Crawford would prove an effective champion of the unproven technology. In March 1946, the navy agreed to fund development of a digital computer called Whirlwind to run a general-purpose flight simulator.

Forrester and Robert Everett, SM ‘43, led a team that got Whirlwind running–at least intermittently–in 1949. It used 4,500 vacuum tubes, occupying the space of five or six offices. But vacuum-tube memory proved wildly expensive and unreliable. Forrester recalls that Whirlwind “always worked when the admirals were there, but it quit pretty much when they walked out of the building.”

That year, Forrester saw an ad for a magnetic material called Deltamax, and it got him thinking about the possibility of storing digital data with magnetic fields rather than electrical charges. He needed a material the polarity of whose magnetic field was hard enough to change that it wouldn’t accidentally flip, causing data to be lost. Metals were probably too slow, but what about magnetic ceramics? If magnetic ceramic cores with the right properties were mounted in an array of wires, each intersection could function as an independent switch, storing one binary digit. Although ferrites experts at Philips Research in the Netherlands said it couldn’t be done, Forrester’s team found a German ceramicist who was building television tubes and asked him to try. Occasionally, he produced a satisfactory magnetic core, proving it was possible. “Often the art runs ahead of the science,” Forrester says. “You find out you can do something and then find out why.”

0 comments about this story. Start the discussion »

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me