Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

After that first attempt on Berlin, Sir Arthur ordered 15 more heavy attacks, expecting to destroy that city as thoroughly as he had destroyed Hamburg. All through the winter of 1943 and ‘44, the bombers hammered away at Berlin. The weather that winter was worse than usual, covering the city with cloud for weeks on end. Our photoreconnaissance planes could bring back no pictures to show how poorly we were doing. As the attacks went on, the German defenses grew stronger, our losses heavier, and the “scatter” of the bombs worse. We never raised a firestorm in Berlin. On March 24, in the last of the 16 attacks, we lost 72 out of 791 bombers, a loss rate of 9 percent, and Sir Arthur admitted defeat. The battle cost us 492 bombers with more than 3,000 aircrew. For all that, industrial production in Berlin continued to increase, and the operations of government were never seriously disrupted.

There were two main reasons why Germany won the Battle of Berlin. First, the city is more modern and less dense than Hamburg, spread out over an area as large as London with only half of London’s population; so it did not burn well. Second, the repeated attacks along the same routes allowed the German fighters to find the bomber stream earlier and kill bombers more efficiently.

A week after the final attack on Berlin, we suffered an even more crushing defeat. We attacked Nuremberg with 795 bombers and lost 94, a loss rate of almost 12 percent. It was then clear to everybody that such losses were unsustainable. Sir Arthur reluctantly abandoned his dream of winning the War by himself. Bomber Command stopped flying so deep into Germany and spent the summer of 1944 giving tactical support to the Allied armies that were, by then, invading France.

The history of the 20th century has repeatedly shown that strategic bombing by itself does not win wars. If Britain had decided in 1936 to put its main effort into building ships instead of bombers, the invasion of France might have been possible in 1943 instead of 1944, and the war in Europe might have ended in 1944 instead of 1945. But in 1943, we had the bombers, and we did not have the ships, and the problem was to do the best we could with what we had.

One of our group of young students at the ORS was Sebastian Pease, known to his friends as Bas. He had joined the ORS only six months before I had, but by the time I got there, he already knew his way around and was at home in that alien world. He was the only one of us who was actually doing what we were all supposed to be doing: helping to win the War. The rest of us were sitting at Command Headquarters, depressed and miserable because our losses of aircraft and aircrew were tremendous and we were unable to do much to help. The Command did not like it when civilians wandered around operational squadrons collecting information, so we were mostly confined to our gloomy offices at the headquarters. But Bas succeeded in breaking out. He spent most of his time with the squadrons and came back to headquarters only occasionally. Fifty years later, when he was visiting Princeton (where I spent most of my life, working as a professor of physics), he told me what he had been doing.

Bas was able to escape from Command Headquarters because he was the expert in charge of a precise navigation system called G-H. Only a small number of bombers were fitted with G-H, because it required two-way communication with ground stations. These bombers belonged to two special squadrons, 218 Squadron being one of them. The G-H bombers were Stirlings, slow and ponderous machines that were due to be replaced by the smaller and more agile Lancasters. They did not take part in mass-bombing operations with the rest of the Command but did small, precise operations on their own with very low losses. Bas spent a lot of time at 218 Squadron and made sure that the G-H crews knew how to use their equipment to bomb accurately. He had “a good war,” as we used to say in those days. The rest of us were having a bad war.

Sometime early in 1944, 218 Squadron stopped bombing and started training for a highly secret operation called GLIMMER, which Bas helped to plan, and whose purpose was to divert German attention from the invasion fleet that was to invade France in June. The operation was carried out on the night of June 5-6. The G-H bombers flew low, in tight circles, dropping WINDOW as they moved slowly out over the English Channel. In conjunction with boats below them that carried specially designed radar transponders, they appeared to the German radars to be a fleet of ships. While the real invasion fleet was moving out toward Normandy, the fake invasion fleet of G-H bombers was moving out toward the Pas de Calais, 200 miles to the east. The ruse was successful, and the strong German forces in the Pas de Calais did not move to Normandy in time to stop the invasion. While Bas was training the crews, he said nothing about it to his friends at the ORS. We knew only that he was out at the squadrons doing something useful. Even when GLIMMER was over and the invasion had succeeded, Bas never spoke about it. My boss, Reuben Smeed, was a man of considerable wisdom. One day at Bomber Command, he said, “In this business, you have a choice. Either you get something done or you get the credit for it, but not both.” Bas’s work was a fine example of Smeed’s dictum. He made his choice, and he got something done. In later life he became a famous plasma physicist and ran the Joint European Torus, the main fusion program of the European Union.

The one time that I did something practically useful for Bomber Command was in spring 1944, when Smeed sent me to make accurate measurements of the brightness of the night sky as a function of time, angle, and altitude. The measurements would be used by our route planners to minimize the exposure of bombers to the long summer twilight over Germany. I went to an airfield at the village of Shawbury in Shropshire and flew for several nights in an old Hudson aircraft, unheated and unpressurized. The pilot flew back and forth on a prescribed course at various altitudes, while I took readings of sky brightness through an open window with an antiquated photometer, starting soon after sunset and ending when the sun was 18 degrees below the horizon. I was surprised to find that I could function quite well without oxygen at 20,000 feet. I shared this job with J. F. Cox, a Belgian professor who was caught in England when Hitler overran Belgium in 1940. Cox and I took turns doing the measurements. My flights were uneventful, but on the last of Cox’s flights, both of the Hudson’s engines failed, and the pilot decided to bail out. Cox also bailed out and came to earth still carrying the photometer. He broke an ankle but saved the device. In later years, he became rector of the Free University in Brussels.

18 comments. Share your thoughts »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me