Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Matthew Wilson listens in on rodents’ dreams. Nancy Kanwisher studies a blueberry-sized region in the human brain that specializes in face recognition. Elly Nedivi spies on the comings and goings of brain cells in living mice.

[Click here to view images.]

The three once delved into the workings of the brain from different corners of the MIT campus. But now they’re likely to encounter one another in the five-story atrium or bamboo-lined hallways of MIT’s new Brain and Cognitive Sciences (BCS) Complex, the largest neuroscience research center in the world. When it officially opened its doors in December, Building 46 became home to the Picower Institute for Learning and Memory, the McGovern Institute for Brain Research, and MIT’s Department of Brain and Cognitive Sciences. Once it is full, the 38,000-square-meter building will house more than 40 faculty members and their research groups as well as a state-of-the-art brain-imaging center.

“There is enormous possibility and opportunity” in neuroscience right now, says President Susan Hockfield, a neuroscientist herself. “The study of the brain is the next frontier.” And with so many MIT scientists from different disciplines working under one roof, they’re likely to map new territory that much faster.

“There’ve been tremendous advances in understanding the genetic basis of life and also tremendous advances in brain images,” says Robert Desimone, director of the McGovern Institute. “The challenge for neuroscience is bridging the gap from what goes on inside one cell in your brain to something that through a complex chain results in either normal cognition, thought, language, perception of beauty – or a terrible brain disorder.”

Researchers study the brain at many different levels of analysis; no coherent picture of the brain, from the genome up to what we think of as the mind, exists. The researchers in the Brain and Cognitive Sciences Complex are committed to developing a more complete, nuanced understanding of the brain through interdisciplinary, collaborative research. A typical BCS project might bring a molecular biologist together with a neurophysiologist and a cognitive scientist to study how a neuron’s gene expression is related to the way it sends electrical signals to other cells, and how those signals affect behavior.

By documenting the workings of the normal human brain, scientists in the BCS complex ultimately hope to determine exactly what goes wrong in the brains of people with autism, dyslexia, Alzheimer’s, and other disorders. They’ll also be looking for insights into such things as how children can learn to manage angry emotions and what causes loss of motor control in Parkinson’s disease. Research at the McGovern Institute is wide ranging, with faculty studying habit formation, neurological cancer, touch perception, and more. Picower Institute research focuses on learning and memory. Most researchers in both institutes are professors in the BCS department; some have dual appointments in biology and other departments.

The value of the BCS complex, says Hockfield, is that it “brings these people together so they can share understanding and talk across what in other places might be divisions between departments and distances between buildings. Work in one area can cross-fertilize work in another – and that’s a tremendously important feature of modern science, particularly modern neuroscience.”

To encourage such cross-fertilization, the BCS building was designed with an eye to fostering community. Inside, open corridors arranged around a central atrium flow between the sections of the building housing the McGovern and Picower Institutes and the BCS department. Common areas – including nooks with groups of armchairs and tea rooms with windows looking into the atrium or out to the city – are bathed in inviting natural light even on a cloudy day. Susumu Tonegawa, director of the Picower Institute, says that the abundance of common spaces in the new building is important because “the seeds of great research ideas often originate from casual conversations.” Before moving into the complex, Picower researchers were based in four separate buildings.

To give you a sense of the ideas that are percolating in the BCS complex, here’s a look inside the labs of three BCS scientists whose work puts them on the cutting edge of brain science.


0 comments about this story. Start the discussion »

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me