Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The next big step is to create a plasma that keeps itself hot with its own fusion reactions. The ITER collaboration has designed a reactor that should sustain such a “burning plasma.” It will require a plasma about twice as large as those produced by current tokamaks and superconducting magnets that consume negligible electric power. ITER will cost about $5 billion to construct.

Fusion is the kind of grand technological challenge that calls for international cooperation. But the length of time its development will require can breed skepticism and discourage policymakers. In the mid-1990s, cuts in the United States’ fusion research budget led it to pull out from the ITER consortium. Thankfully, it rejoined in 2003, but in a more junior role, reflecting its relatively modest funding of fusion projects: $290 million in 2006, less than half Europe’s commitment.

The United States still has two world-renowned tokamaks – one at MIT, the other at General Atomics in San Diego – whose research will be crucial in helping to resolve and prepare for challenges that ITER faces. But U.S. leadership in fusion plasma science cannot be sustained without a renewed commitment of resources. The United States’ present 10 percent share of ITER will call for peak expenditures of perhaps $150 million per year – mostly for industrial procurements, not for research.

If that money were taken from the existing federal fusion research budget, it would decimate U.S. fusion research. That is why the U.S. fusion community’s overwhelming enthusiasm for ITER is predicated on strong domestic support for fusion and plasma physics research, plus additional funds for ITER construction. Even if the U.S. increased its funding for fusion research to $500 million per year, that would still be substantially less than it spends separately on high-energy physics, fossil energy research, and basic energy sciences, not to mention the recent budgets of the Missile Defense Agency ($9 billion) and NASA ($16 billion).

Ultimately, fusion could prove to be one of the most environmentally attractive energy options. The United States should seize the opportunity to play a strong role in ITER’s success and demonstrate its commitment and long-term vision as a scientific collaborator by revitalizing its overall fusion program.

0 comments about this story. Start the discussion »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me