Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

MIT’s Center for Cancer Research is not much to look at. It’s part of the large nondescript complex on Ames Street where buildings E17 and E18 begin and end with no clear delineation. The glass door of the center’s main entrance is as unremarkable as its basic brick facade. The lobby–which isn’t really a lobby at all but a narrow elevator bay with a set of stairs that lead to the reception area–has the feng shui of a utility closet. The windows leak when it rains and the place is overcrowded. In fact, only 13 of the center’s 33 members have offices in the building. The rest are scattered across campus.

But remarkable things happen here. Since the facility opened in 1974 under the direction of biology professor and Nobel laureate Salvador Luria, it has become a seat of cutting-edge research in molecular biology, genetics, cell biology, and immunology. Here, scientists have helped dispel early views about what triggers cancer; they’ve shone a light on how cells work; they’ve uncovered molecules now used in cancer-fighting drugs; they’ve discovered disease-causing genes; and they’ve developed new tools for cloning cells and sophisticated models for testing gene function. And yet people still seem puzzled when center director Tyler Jacks talks about cancer research at MIT. “We often get blank looks [because] they don’t understand we do biology at all, let alone disease-oriented research, let alone cancer research.”

The nondescript building may be partially to blame, but more likely than not, people overlook the center because it does not treat patients or conduct clinical trials. Instead, it is one of eight centers nationwide designated by the National Cancer Institute (NCI) to do basic cancer research. Over the last 30 years, that research has evolved from the investigation of cells’ molecular components in isolation to the consideration of how those components operate as a system. That broadening of perspective has required, among other things, biological models that imitate cancer growth in living tissue, collaborations that draw on fields outside of biology, and close examinations of the chemical circuitry underlying it all. The researchers at the MIT center are by no means the only ones subjecting the disease to such scrutiny. But, says Dinah Singer, director of the division of cancer biology at NCI, “they have taken a leadership role in this area.” The center’s strengths, Singer notes, are its faculty, the breadth of their expertise, and the level of their interaction with the rest of the university, which puts them in a position to take enormous strides in developing new forms of biotechnology. A sampling of some of the center’s latest research and cross-disciplinary initiatives reflects its progress and points to the path it will follow in its fight against cancer.

Pages

0 comments about this story. Start the discussion »

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »