Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

If we go out a few more years, iPods and similar devices will be able to store massive numbers of movies, rather than the paltry one or two you can carry around today. In fact, 20 years from now, a teenager will probably be able to shuffle down the street with every movie ever made in a $400 iPod. There will be tremendous business opportunities in digitizing old television shows and films, and for developing technologies that will let users browse and search them all. And of course we’ll witness epic battles over content ownership and compensation.

But personal storage is only one exponential technology: plenty of others exist. Intel has just announced that it is going to add a second processor to its previously one-processor consumer chips. And chips with even more processors are coming: I know of lab prototype chips with 16 processors. Multiple processors allow many threads of computation to proceed at once, and this changes the paradigm of how to do computing. It requires new approaches in some aspects of programming and other areas of computer science – but it will enable new applications, such as fast, cheap processing of stereo vision.

Meanwhile, wireless bandwidth and range are surging. Wireless connections to laptops and desktops have speeded up nearly fivefold in recent years. Over the next five years, we’ll see another 20-fold gain. New high-bandwidth networks will have ranges of tens of kilometers, versus today’s tens of meters. These trends will let us live always-connected broadband lives and enjoy a range of new services.

Finally, the cost of sequencing DNA is diminishing exponentially. By next year, the cost of sequencing a person’s genome is expected to be a mere penny per base pair. Compare that to the $10 it cost in 1990. At that rate, sequencing a person’s 3.2 billion base pairs should cost only $32,000 by 2020. As a practical matter, it’s only necessary to look at 10 million base pairs to cover all the variations in the human genome. Sequencing this number – in order to determine a person’s genetic fingerprint and disease susceptibility – would cost only about one dollar by sometime in the 2020s.

One can find plenty more exponentials out there, from the volume of scientific literature (increasing exponentially for hundreds of years already!), to the number of networked sensors that surround us, to the amount of spam we all receive. They, and others, are all going to have an impact on research and development opportunities, and on our lives. Bring them on!

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »