Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The problem with free-roaming probes is detecting when one has successfully bound to its target. Bamdad solved that problem by attaching the probes to extremely tiny spheres of pure gold called gold nanoparticles, a feat that required her to also solve some tricky surface-chemistry problems. When the probes bind to their targets, the gold particles clump more closely together, causing the color of the solution to shift visibly from pink to blue. And by enabling the probes to interact with potential targets in three dimensions, Minerva lopped several zeroes off typical testing times.

Testing times matter greatly to pharmaceutical companies who seek to automate the screening of potential new drugs. But even more valuable to these companies is Minerva’s ability to attach several different probes to each nanoparticle-enabling the detection of pairs of molecules joined together. This ability is critical in drug development, where a key factor is identifying whether or not a candidate drug hits its desired target. Bamdad has also used her nanoparticle techniques in attempting to understand certain disease mechanisms, and she believes that she has developed a unique method of early detection for many types of common cancers, including breast cancer.

In addition to applications in drug screening and disease diagnosis, Minerva is going after the hot field of proteomics-the effort to study all 500,000 or so proteins encoded in the human genome. Identifying these proteins and understanding which bind to which should bring tremendous new power to the field of life sciences. Bamdad thinks her nanoparticle probes are ideally positioned to solve gigantic chunks of the problem because of their ability to yield information about how proteins bind together.

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me