Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Even as the pace of nanotechnology research accelerates in labs around the world, a few early studies have raised concerns that tiny man-made particles might pose threats to human health or the environment. While the extraordinary properties of nanoparticles (those smaller than 100 nanometers, the size scale of viruses and even individual molecules) could enable everything from extremely sensitive diagnostic tools to superstrong materials, those same properties might also allow them to penetrate deeper into the lungs, pass more readily through skin, or linger longer in the environment as pollutants-effects that could trigger new regulations.

A collective effort to gather more information is now under way among corporate, academic, and government researchers hoping to get a clearer understanding of whether nanoparticles really do present any dangers. The stakes could hardly be higher. Common items-including some sunscreens and tennis balls-already contain nanoparticles, and some estimates hold that global nanotech-based production will exceed $1 trillion within 15 years. Environmental groups are beginning to warn about potential dangers; the activist organization ETC Group, for one, is actively lobbying for a research moratorium.

The debate is hampered by a dearth of data. “The lack of technical data on the topic provides fertile ground for both nanotechnology proponents and skeptics alike to make contradictory and sweeping conclusions about the safety of engineered nanoparticles,” says Vicki L. Colvin, a chemist and director of the Center for Biological and Environmental Nanotechnology at Rice University in Houston. But over the next several years, she says, useful data should be on hand.

One key question is what happens to nanoparticles in the environment. Researchers at Rice are currently conducting studies of how soccer-ball-shaped carbon molecules known as buckyballs-a potential ingredient of everything from new contrast agents for medical imaging to active layers in fuel cells-affect bacteria and simple organisms like worms. In a separate study they are exploring whether buckyballs tend to move up the food chain. In addition, Rice researchers are examining how effectively buckyballs, which are extremely stable and robust, absorb toxic materials; binding to buckyballs could potentially make the toxins themselves more chemically stable, or enable them to travel farther through air or water.

Other studies are examining the effects of inhaling nanoparticles, an issue of particular concern for workers in laboratories or factories where nanoparticles are being used. In animal experiments last year, researchers at DuPont in Wilmington, DE, found that single-walled carbon nanotubes-which show promise for use in nanoelectronics and ultrastrong materials-ended up deep in the tiny air sacs of rats’ lungs, where they caused lesions indicative of toxicity. In 15 percent of the rats, the carbon nanotubes aggregated into lethal, suffocating clumps. This and other studies by David Warheit, a DuPont toxicologist, indicate that size matters; nanoparticles generally are more toxic when inhaled than larger particles of the same materials.

0 comments about this story. Start the discussion »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me