Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

David P. Reed

Position: Adjunct professor of media arts and sciences, MIT; HP Fellow, Hewlett-Packard Labs

Issue: Radio spectrum allocation. The demand for wire- less communication, from cordless phones to Internet access, is growing faster than existing technologies can accommodate. Many feel Federal Communications Commission regulations are stifling innovation that could help.
Personal Point of Impact: Leading researcher in next-generation radio networks; public advocate of changing spectrum regulations to allow experimentation with new radio technologies Technology Review: Why is our use of radio causing problems?
David Reed: There’s clearly a huge demand for wireless digital communications that is driving high growth rates of services and devices, from traditional cell phones to Wi-Fi devices to other new things. We’ve gone from the idea where radio is an expensive thing that you only want to use when absolutely necessary to the idea that it’s a convenience item for interconnecting everything, so my mouse and my keyboard talk to my computer by radio. The flip side of that is, what if we start doing that more and more as it gets cheaper and cheaper? Does everything start interfering with everything else, and do we have to pick what’s allowed to talk to what? That’s the question: how do you meet this overwhelming demand and overwhelming possibility with a sensible way of scaling up the use of radio.

TR: “Radio” brings to mind what we turn on when we get into the car, where a station broadcasts at a certain frequency, and if someone else uses that frequency, then we can’t get our music or talk show. Is that not how all radio technologies work?
Reed: Well, it’s certainly not correct from the point of view of the technology. Long ago, when radio spectrum was wide open and we weren’t able to do very good radios, we decided that the best and cheapest way to allow many radios to operate on the same channel was to divide the spectrum up according to the application. So we have bands that are assigned to broadcast AM radio, bands for television, for two-way communication, and all that. We didn’t think at all technologically about that; dividing by frequency was easy to do given the technology of the day.

In the past 10 to 12 years, we’ve started to realize many, many technologies can effectively share the airwaves without necessarily causing each other to malfunction. But the regulations that we and other countries apply to radio transmission don’t admit that those new approaches are even legitimate. To get a new technology approved, especially one that contradicts the original assumptions, is virtually impossible-an incredibly political problem with lots of vested interests in keeping things the same.

TR: How does that play out practically with the Federal Communications Commission, which regulates airwaves in the United States?
Reed: A really interesting example is what happened to ultrawideband. The company I was at before 1996-Interval Research-was looking at innovative technologies for very-short-distance networking, and one of the things we discovered, in its infancy, was ultrawideband. Interval financed a large investment in taking that technology from a research possibility to some commercial capabilities and spun off a company called Fantasma Networks.

Ultrawideband is a technology that uses very, very low energies in every band, so it theoretically should not interfere with existing services. But proving a negative-proving that it will not interfere with any existing service-is extremely difficult, and the FCC basically had to push ultrawideband through the approval process without that absolute certainty. For several years, the FCC delayed rule-making on ultrawideband. The prospects of interference were the big issue. But underneath it all, there’s also this issue of, if it was made legal, many services could move to ultrawideband, and then there would be unrestricted competition against existing providers of services. For example, you might see ultrawideband being used to provide television, or radio, or two-way telephone communication, and that would eliminate the monopoly or oligopoly benefits that come to the current spectrum holders. So they have a strong incentive to fight this. It’s very hard to make a wise decision confronted with highly politicized technical arguments.

Fantasma continued to develop the technology, but approximately a year before the FCC finally allowed some ultrawideband, the investment community lost patience in this company, and it basically had to fold. It shows how the regulatory environment really stifles potential innovation that is crucial to solving this huge need of having much more capacious wireless networking capabilities that can work at all distances and scale to much larger numbers of devices and users than we have today.

0 comments about this story. Start the discussion »

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me