Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Gene Repair

Though facing high hurdles, gene therapy remains the best long-term hope for treating many genetic diseases. But for some devastating disorders, such as polycystic kidney disease, simply supplying patients with healthy copies of their disease-causing genes-the traditional approach in gene therapy-may not be enough. Molecular geneticist Al George at Vanderbilt University in Nashville, TN, has demonstrated a type of gene therapy that can repair the damage caused by such diseases. George created a gene that encodes an RNA enzyme that can excise defective portions of mRNA molecules-short templates that translate a gene’s code into a protein-and replace them with the correct sequences. He showed that after injection with the new gene, cells carrying a mutated gene that causes a muscle-wasting disease stopped producing the harmful protein and began producing the normal one. George hopes to improve the process enough to begin animal studies within two years.

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me