Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Why did it take less than two weeks to find the mutant coronavirus responsible for Severe Acute Respiratory Syndrome, or SARS, while it took the better part of three years to find HIV? There are many reasons-including better technology and a less elusive viral target-but don’t discount the unprecedented level of worldwide communication among SARS researchers.

The success of a global research network in identifying the pathogen is an example of the huge payoff that can result when researchers put aside visions of patents and glory for their individual laboratories and let their work behave more like, well, a virus. After all, the hallmark of an opportunistic virus like the one that causes SARS is its ability to spread quickly. Those mounting a response need to disseminate their information and innovation just as rapidly.

As you may remember, collaboration was not exactly a strong point in the search for the virus that causes AIDS. That effort, while marked by some remarkable scientific work, was conducted mostly by individual labs working in secret. Pride, prestige, and profit were all very much on the line. So much so, in fact, that Robert Gallo’s lab at the National Cancer Institute in the United States wound up in a colossal wrangle for nearly a decade with Luc Montagnier’s lab at the Pasteur Institute in Paris over which team had rightful claim to discovering HIV-and which deserved a U.S. patent for an HIV blood test. Montagnier’s team even sued the National Cancer Institute, seeking a share of millions of dollars in royalties from a blood test patent garnered by Gallo’s team; the lawsuit ended with an out-of-court settlement splitting those royalties. There is no question that the fighting consumed time that could have been spent trying to combat the disease.

Now fast-forward to the early days of the SARS outbreak. This time around, a collaborative research engine was already primed. For years, a team led by Klaus Stohr, a virologist at the World Health Organization, has been readying an international network of laboratories in anticipation of the next pandemic flu strain. This network of 11 labs with high-level biosafety containment facilities in nine countries around the globe swung into action to combat SARS.

Stohr’s team activated secure Web sites that could keep the worldwide network of researchers, clinicians, and epidemiologists in constant contact. This communications system was so well designed that researchers could display patient samples and electron microscope pictures in real time to colleagues continents away. Details of each lab’s analysis and testing of samples were posted online so researchers could instantly act upon relevant information. In addition, Stohr’s team organized daily teleconferences among researchers to discuss progress and obstacles.

0 comments about this story. Start the discussion »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me