Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Thomas B. Okarma

Position: President and CEO, Geron
Issue: Embryonic-stem-cell and cloning research. The U.S. political climate is proving inhospitable to biomedical research that could benefit millions, and other nations are jumping in to fill the void.

Personal Point of Impact: Over 20 years of research to create commercial cell-based therapies.
Technology Review: Human embryonic stem cells, primitive cells with the ability to form every type of tissue, could lead to effective treatments or even cures for ailments such as heart failure, Parkinson’s disease, diabetes, and spinal-cord injury. But creating the cells requires destroying human embryos, a hugely controversial issue. How do you address that?
Tom Okarma: These cells are derived from embryos created using in vitro fertilization that are donated under informed consent by couples who no longer need them to achieve pregnancy. For the couple, their choice is threefold: have the extra embryos stored frozen, forever; have them destroyed; or donate them for research. Our whole justification for trying to develop this field isn’t that we don’t have regard for the sensitive issues of creation of life. It’s because in that unused embryo is the most incredible cell ever discovered, a cell that solves the technical, commercial, economic, and medical problems that have prevented cell therapy from making it in the past 20 years. The fact that one embryo produces untold billions of cells for thousands of patients’ therapies is enormous ethical leverage. A master cell bank of embryonic stem cells can make enough dopamine-producing neurons for 10 million Parkinson’s patients. That is beyond our wildest dreams, even three years ago!

TR: One argument you hear quite a lot is that experiments by academic researchers have shown that stem cells from adult tissues, such as bone marrow cells, can be transformed into all these cell types, too. So why use embryonic stem cells?
Okarma: Well, first of all, no one has actually shown that. That is a misinterpretation of the data. With this kind of research, you’re asking a cell that is naturally programmed, let’s say, to make blood-to use the most commonly cited adult stem cell-and you’re trying to turn it into a liver cell or a heart cell or a brain cell. These cells are not programmed to do that. So even if you are able to belt those cells over the head to make a half a percent of them morph into heart muscle cells or neurons, those cells are not making that transition in a scalable way. So you’ll never be able to address the market with that kind of process. You’re back to an individualized, case-by-case therapy, back to the old bone marrow transplant model.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me