Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Creepy Chips

Polymer-and-silicon chips lined with tiny structures that act like biological cilia, or hair cells, could provide a new way to position and assemble delicate hardware, says electrical engineer Karl Bhringer at the University of Washington. Activated by heat, the artificial cilia work in groups of four, each group measuring about one millimeter across. Each chip has 256 cilia: Flip the chip upside down, and it can walk on a table. Put a platoon of them on the outside of a space station, and they could grab hold of a small satellite and make minute adjustments to its position as it docks, refuels, and transfers data. In collaboration with Stanford University, Bhringer has shown that an array of four chips can align a mock satellite the size of a tennis ball by nudging it to and fro. But the researchers will need to reduce power consumption by a factor of 10, he says, before the chips will be ready for space. A possible solution: electrostatically activated cilia, which are in development and could be ready for testing within a year.

0 comments about this story. Start the discussion »

Tagged: Web

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me