Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Bacteria Pump

As microscale devices get smaller and smaller, researchers look for new ways to control movements inside them. A team at the University of Arkansas, led by mechanical engineer Steve Tung and bioengineer Jin-Woo Kim, has developed a way to pump tiny amounts of fluid by harnessing the motions of living cells. Unlike electrical or mechanical systems that rely on high voltages or pressures, the new technique uses harmless bacteria, each of which attaches a leglike appendage to a flat surface and rotates about this anchor point. The rod-shaped bacteria spin “like a merry-go-round,” says Tung, at 10 cycles per second. The trick, he says, is getting the cells to stop, go, or change speed by adjusting their glucose intake. With a few cells lined up in a glass-walled channel, Tung and Kim plan to show that the device can move the 0.25 nanoliters per minute a computer model predicts is possible. Tung says that could lead to biomechanical chips for drug delivery and DNA sequencing in about three years.

0 comments about this story. Start the discussion »

Tagged: Web

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me