Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Replacement skin could save the lives of severely burned patients and spare them from painful skin-graft-harvesting operations. But today’s “artificial skin” products are used only as temporary dressings for wounds, not permanent grafts for burns, in part because they’re made without something vital to the survival of skin grafts-blood vessels. A handful of researchers are working to change that.

One method combines several types of cells with genetic engineering. Yale University dermatologist Jeffrey Schechner starts with dermis-the skin’s bottom layer-from organ donors. He strips cells from this tissue and adds keratinocytes-the cells that make up the top layer of skin-from the foreskins of circumcised baby boys. Next he adds endothelial cells that come from the lining of veins in umbilical cords and have been genetically engineered to produce a growth-promoting protein. These cells multiply and line the channels left by the dermis’s original blood vessels.

All this may sound a bit ghastly, but it seems to work as Schechner described last spring at the annual meeting of the Society for Investigative Dermatology. Schechner grafted the new skin onto the back of a mouse, and two weeks later he found red blood cells in the channels of the graft-an indication that the mouse’s blood vessels had linked with the synthetic ones.

Schechner is now fine-tuning his system.

One issue: how to ensure that a graft doesn’t trigger an immune reaction. “Endothelial cells are extremely immunogenic-they’re one of the main targets of rejection in organ transplantation,” says Franois Auger, director of the Laboratory of Experimental Tissue Engineering at Canada’s Laval University. Researchers at Laval and at Shriners Burns Hospital in Cincinnati plan to use patients’ own cells, multiplied in the lab, to grow skin. The Shriners team seeds the cells on a fabriclike collagen scaffold. The Laval group instead coaxes the cells to secrete the proteins necessary to build their own scaffolding.

It will be at least a year before any of these new skins is ready for human testing. But given that burns each year hospitalize 45,000 people in the United States and kill hundreds of thousands worldwide, successful approaches could mean less pain and save more lives.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me