Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Glowing Memory

Because conventional computers work with one small chunk of data at a time, they’re lousy at distinguishing faces and other subtly varying patterns. An “associative memory” under development at Syracuse University may solve the problem by enlisting a protein found in salt marsh bacteria. When exposed to laser light, the protein, called bacteriorhodopsin, twists into various positions that change its color. A database of images-faces, for instance-could be written by lasers into a layer of the protein. To find a match for an unidentified face, its image could be projected simultaneously onto all the images stored in the database; the superimposed pair of images whose features match most closely will glow the most brightly. A lab version of the system can already distinguish printed letters, but a commercial prototype is at least five years off, says Syracuse team leader Jeff Stuart. The researchers are looking for ways to write higher-resolution images with smaller lasers.

0 comments about this story. Start the discussion »

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me