Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }


Thanks to new improvements in joint design, snakelike robots might more easily slither their way into collapsed buildings or toxic waste sites. Mechanical engineer Howie Choset of Carnegie Mellon University uses beveled gears to connect the joint around its circumference rather than at its center; the device’s improved efficiency allows for the use of smaller motors. The result is a robot just five centimeters in diameter that is just as strong as and more maneuverable than today’s best snakebots, which are 15 centimeters wide. Choset recently received $800,000 from the U.S. Department of Energy to develop a 10-joint, 1.2-meter-long snake robot. He expects to complete the first prototype this fall. If all goes well, Choset says, within two years his sensor-laden snakebot could be sensing radiation levels at toxic sites or beaming images from within rubble piles.

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me