Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Cell Sensor

Most sensors used to measure pollutants in lakes and rivers fail to detect small concentrations that may still be harmful to humans. Researchers at the University of Tokyo’s Institute for Industrial Science have designed an ultrasensitive device that uses human cells to detect these low but hazardous levels.

The sensor consists of a fine plastic tube containing lab-grown human cells. A sample of water is poured into the tube, along with a low-density lipoprotein (a compound made of fat and protein) tagged with a fluorescent dye. Toxic chemicals in the water slow down cells’ uptake of the lipoprotein, resulting in dimmer fluorescence. In preliminary tests, the disposable sensor detects the presence of small traces of such poisonous compounds as lead nitrate, acetaldehyde and sodium arsenite (all of which impede lipoprotein uptake) in two hours, versus the two days that conventional laboratory sensors would need to register them. Yasuyuki Sakai, one of the scientists who developed the device, says it could take up to five years to bring it to market.

0 comments about this story. Start the discussion »

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me