Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Cool Rays

X-ray machines have changed little over the century: a metal filament heated to 1,500 C in a glass vacuum tube shoots out electrons that hit a piece of metal, generating the radiation that travels through flesh but not bone. Physicist Otto Zhou at the University of North Carolina has come up with a cooler way to make x-rays. Zhou replaces the filament with carbon nanotubes-large, pipelike carbon molecules. Exposure to a weak electric field causes the nanotubes to emit electrons, which in turn produce x-rays the conventional way and make images such as the one shown. Because the whole process can take place at room temperature, there’s no need for heavy equipment to heat up the electron source. Nanotube-based x-ray machines can therefore be much smaller than conventional ones, making portable devices possible. To commercialize the technology, Zhou cofounded Applied Nanotechnologies in Chapel Hill, NC. The company aims to have its first product on the market within two years.

0 comments about this story. Start the discussion »

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me