Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

It’s not quite Mary Shelley’s image of a corpse brought to life by electricity, but biomedical engineers have found a way of using electricity to bring artificial bone to life. The method could one day yield bone replacement parts.

Bioengineer Rena Bizios at Rensselaer Polytechnic Institute uses carbon nanotubes-tubular molecules that are good electrical conductors-to deliver electricity to bone-forming rat cells deposited on a piece of polymer. Researchers have long known that electrical stimulation enhances bone growth, but it’s hard to deliver the electricity uniformly: new bone tends to clump around the electrodes delivering the charge. Bizios’s technique could solve that problem, though, since the nanotubes are embedded throughout the polymer. When the researchers turned on the electricity, the bone cells grew and began to deposit the proteins and calcium that give bone its strength. That the technique worked so well “was a great surprise,” says Bizios.

Researchers don’t know yet if the approach will ultimately yield uniform bone tissue, but the results are “very exciting and very promising,” says Antonios Mikos, a biomedical engineer at Rice University. While doctors can treat small bone injuries by surgically implanting patchlike materials, they can’t yet generate the large sections of bone that would be needed to replace a hip ravaged by osteoporosis, for example. Bizios’s material, on the other hand, opens up the possibility of quickly growing large sections of artificial bone in the lab using a patient’s own cells and nanotube-wired polymer scaffolding. Surgeons could then replace any damaged or diseased parts of a patient’s skeleton with the new bone.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me